

Minimum Distance Separation (MDS) Formulae

Implementation Guidelines

Publication 707

IMPLEMENTATION GUIDELINES – MINIMUM DISTANCE SEPARATION FORMULAE

The following section outlines the specific implementation guidelines that need to be considered as part of the application and calculation of the Minimum Distance Separation (MDS) Formulae. To assist the user the implementation guidelines have been organized into six sections.

Implementation Guideline	MDS I	MDS II

General Rules and Application of the Minimum Distance Separation Formulae

The following implementation guidelines speak to some of the general rules regarding the MDS Formulae, and how they are to be referenced in planning documents and applied to land use applications and building permits. This section also highlights some of the specific instances where MDS Formulae are applied and exceptions where they are not applied.

1. Application of MDS and reference in municipal planning documents	MDS Formulae and criteria are to be referenced in official plans, included in zoning by-laws and applied in designations and zones where <i>livestock facilities</i> are a permitted use. MDS will be applied in Prime Agricultural Areas and Rural Areas as defined by the Provincial Policy Statement, 2005.
2. What MDS <u>does</u> and <u>does not</u> apply to	MDS applies to <i>livestock facilities</i> . It does not apply to abattoirs, apiaries, assembly yards, fairgrounds, feed storages, field shade shelters, greenhouses, kennels, <i>livestock facilities</i> that are less than 10 m ² (108 ft ²) in floor area, machinery sheds, mushroom farms, pastures, slaughter houses, stockyards, or temporary field nutrient storage sites (as defined under the <i>Nutrient Management Act, 2002</i>).
3. MDS and manure transfer facilities	Some <i>livestock facilities</i> require small facilities for holding some manure before transfer to long-term permanent storage, or transfer to field spreading areas, or transfer off the farm entirely. Examples include: small tanks inside or just outside the barn for settling out sand from liquid dairy manure; small sumps inside or just outside the barn for collection and/or mixing of liquid manure from several barn areas; or concrete pads at the end of chicken broiler barns where solid manure is pushed outside awaiting pickup by a trucker. These facilities should be considered as part of the barn and have the same MDS setbacks as the barn.

Implementation Guideline	MDS I	MDS II
4. MDS and earthen <i>manure storages</i>	MDS I is applied to earthen storages, despite the fact they are not considered to be a building. Best management practices recommend the MDS formula be followed for earthen <i>manure storages</i> , and this is backed up by the Provincial Policy Statement, 2005, 'New land uses, including the creation of lots and new or expanding livestock facilities shall comply with the minimum distance separation formulae'.	MDS II is triggered when a building permit is required, but because earthen storages are not considered to be a building, they do not require a building permit. However, this does not exclude them from the requirement for siting according to the MDS formula. Best management practices recommend the MDS formula be followed for earthen <i>manure storages</i> , and this is backed up by the Provincial Policy Statement, 2005, <i>'New land uses, including the creation of lots and new or expanding livestock facilities shall comply with the minimum distance separation formulae'.</i>
5. When are MDS Formulae implemented and applied?	MDS I is applied at the time of planning and/or development review for proposed new development, such as <i>lot</i> creation, building permits for development on a <i>lot</i> in accordance with Implementation Guideline # 6, rezoning or redesignation of agricultural land to permit development, in proximity to <i>existing livestock facilities</i> on an existing or proposed separate parcel of land.	MDS II is applied at the time of building permit application to build a <i>first</i> or <i>expanded livestock facility.</i>
6. MDS and surrounding development. When is MDS applied?	MDS I is applied to all <i>livestock facilities</i> reasonably expected to be impacted by the proposed development, <i>lot</i> creation, rezoning or redesignation. For Type A applications, apply MDS I for <i>livestock</i> <i>facilities</i> within a 1000 metre radius. For Type B applications apply MDS I for <i>livestock</i> <i>facilities</i> within a 2000 metre radius. Separate MDS I calculations should be undertaken for each <i>livestock facility</i> located on a separate parcel of land. See Implementation Guidelines # 34 and # 35 for a discussion regarding Type A and Type B land uses.	MDS II is applied to all development reasonably expected to be impacted by the proposed <i>first</i> or <i>expanded</i> <i>livestock facility</i> .

Implementation Guideline	MDS I	MDS II
7. Application of MDS to development on existing <i>lots</i>	Municipalities have the option, but are strongly encouraged to apply MDS I to development proposed through building permit on an existing <i>lot</i> . Construction of a <i>dwelling</i> , or other structures that are incompatible with <i>livestock facilities</i> , on an existing <i>lot</i> can have a very detrimental impact on the ability of surrounding agricultural operations to expand in the future, and often introduces a potential new source for nuisance complaints regarding odour from a <i>livestock facility</i> , that would generally not be allowed if the <i>lot</i> were to be created today. To address the potential negative impact of nuisance complaints to surrounding <i>livestock</i> operations from development on existing <i>lots</i> , municipalities are encouraged to undertake a thorough review of this issue at the next update of their municipal planning documents. Municipalities should consider approaches to address the future use and suitability of development on existing <i>lots</i> . The application of MDS I to development on existing <i>lots</i> will take its direction from the applicable municipal planning documents.	MDS II applies to <i>lot</i> lines.
8. MDS and Consent Applications	MDS I is applied to a proposed <i>lat</i> , vacant or with existing structures. Where a new <i>lot</i> is proposed with an existing <i>dwelling</i> , and that <i>dwelling</i> is already located on a <i>lot</i> separate from the subject <i>livestock facility</i> , MDS I is not applied as the potential odour conflict is already present between the neighbouring <i>livestock facility</i> and the existing <i>dwelling</i> . However, municipalities may choose to apply MDS I from the neighbouring <i>livestock facility</i> to a proposed <i>lot</i> with an existing <i>dwelling</i> . Direction to apply MDS I in these circumstances should be clearly indicated in the municipality's planning documents. MDS I is applied to a proposed <i>lot</i> with an existing <i>dwelling</i> when the <i>dwelling</i> is presently located on the same <i>lot</i> as the subject <i>livestock facility</i> .	N/A

Implementation Guideline	MDS I	MDS II
9. MDS and Zoning By-Law Amendments	MDS I is applied when new development is proposed by way of a re-zoning in a zone where agriculture is a permitted use.	N/A
10. MDS and Official Plan Amendments	MDS I is applied to lands being considered for non-agricultural designation through the official plan amendment process.	N/A
11. Application of MDS after a <i>catastrophe</i>	Where municipalities apply MDS I to buildings or structures on an existing <i>lot</i> , municipalities have the option to not apply MDS I after a <i>catastrophe</i> that destroys part or all of a <i>dwelling</i> , providing the resulting new <i>dwelling</i> is built no closer to a <i>livestock facility</i> than before the <i>catastrophe</i> .	Municipalities have the option to not apply MDS II after a <i>catastrophe</i> that destroys part or all of a <i>livestock</i> <i>facility</i> , providing the resulting <i>livestock facility</i> is built no closer to a surrounding development than before the <i>catastrophe</i> . However, if rebuilding results in higher values for Factor A, B and/or D than before the <i>catastrophe</i> , then MDS II applies.
12. Existing uses that do not conform to MDS	MDS I is applied to new proposed development, even though there may be existing non- <i>agricultural uses</i> that do not conform to MDS I requirements. Where there are four, or more, existing non-farm uses closer to the subject <i>livestock facility</i> and in immediate proximity to the current application, MDS I will not be applied. The current application must not be located closer to the <i>livestock facility</i> than the four, or more, existing non-farm uses.	MDS II is measured from the proposed new construction of an <i>expanding livestock facility(ies)</i> even though there may be parts of the existing <i>livestock facility</i> , that do not conform.
13. Non-application of MDS to accessory structures	When a municipality applies MDS I to development on an existing <i>lot</i> , it is not applied to buildings and structures, accessory to a <i>dwelling</i> , such as decks, garages, gazebos, greenhouses, outbuildings, picnic areas, patios or sheds.	MDS II is not applied to buildings and structures, accessory to a <i>dwelling</i> on an adjacent <i>lot</i> , such as decks, garages, gazebos, greenhouses, outbuildings, picnic areas, patios or sheds.

Implementation Guideline	MDS I	MDS II
14. Livestock occupied portions of livestock facilities	MDS is not applied to portions of the <i>livestock facility</i> where <i>livestock</i> are not normally present for a long enough time for substantial amounts of manure to accumulate. For example, this includes feed bins, feed preparation areas, field shadeshelters, <i>livestock</i> assembly areas, <i>livestock</i> loading chutes, machinery sheds, milking centres, offices, riding arenas, silos or washrooms.	
15. Setbacks - <i>dwelling</i> from <i>livestock facilities</i> , same <i>lot</i>	Neither MDS I nor MDS II are applied between a <i>dwelling</i> and a <i>livestock facility</i> located on the same <i>lot</i> .	
16. Ownership of adjacent land by same owner	MDS is applied regardless of the ownership <i>lots.</i> Ownership of adjacent or adjoining legal not prevent the application of MDS.	of adjacent or adjoining legally separate ly separate <i>lots</i> by the same owner does

Determining *Livestock Facility* Capacity

The following implementation guidelines provide direction on determining the capacity of a *livestock facility* for calculating MDS; as well as, direction on applying MDS to *empty livestock facilities*.

17. Obtaining Required <i>Livestock</i> Information from Owners	Information to be used in MDS calculations, (such as capacity of the <i>livestock facility</i> , type of <i>manure storage</i> , number of <i>tillable hectares</i> , etc.,) should be obtained from the owner of an <i>existing</i> or <i>first livestock facility</i> . It may be necessary to independently verify the information received from the owner of the <i>livestock facility</i> to ensure accuracy of an MDS calculation.	
18. Smallest size of <i>livestock facility</i> for MDS	For the purposes of calculations, the smallest size of <i>livestock facility</i> is deemed to be five <i>Nutrient Units</i> , regardless if there are fewer <i>Nutrient Units</i> within the <i>livestock facility</i> , or not.	
19. Capacity of <i>livestock facilities</i> for MDS	MDS calculations shall be based on the maximum <i>livestock housing capacity</i> for all <i>livestock facilities</i> on a <i>lot</i> , even if the building is not currently used, but is structurally sound and reasonably capable of housing <i>livestock</i> . This also applies for permanent <i>manure storages</i> on <i>lots</i> where there is no <i>livestock</i> generating manure.	
20. Application of MDS to <i>empty</i> <i>livestock facilities</i>	MDS I applies to <i>empty livestock facilities</i> if they are structurally sound and reasonably capable of housing <i>livestock</i> , or storing manure. The MDS I calculation should be based on the most probable Factors A, B and D. The Ministry of Agriculture, Food and Rural Affairs may provide municipalities with additional information to guide them in this determination. See Implementation Guidelines # 25, 26 and 28 regarding Factors A, B and D.	MDS II applies to <i>empty livestock</i> <i>facilities</i> that are part of an <i>expanding</i> <i>livestock facility</i> if they are structurally sound and reasonably capable of housing <i>livestock</i> , or storing manure. The MDS II calculation should be based on the most probable Factors continued

Implementation Guideline	MDS I	MDS II
20. Application of MDS to <i>empty</i> <i>livestock facilities</i> continued		 A, B and D. continued See Implementation Guidelines # 25, 26 and 28 regarding Factors A, B and D. However, <i>empty livestock facilities</i> can be excluded from MDS II calculations for <i>expanding livestock facilities</i> if a building permit is required for altering the facilities so they are no longer capable for the housing of <i>livestock</i> (or manure). Municipalities may consider other approaches which achieve the same objective.

Anaerobic Digesters

The following implementation guidelines speak to issues related specifically to *anaerobic digesters*, such as determination of appropriate MDS factors, and setbacks for *co-substrate input tanks (CSIT)* and *anaerobic digesters (AD)*.

21. Storages for <i>digestate</i> from an <i>anaerobic digester</i> and how to apply Factors B and C	When a <i>livestock facility</i> installs an <i>anaerobic digester</i> (<i>AD</i>), some supplemental agricultural or non-agricultural materials may be imported to help boost biogas production. This means a larger storage for the resulting materials treated by the <i>AD</i> system is required.	When a <i>livestock facility</i> installs an <i>anaerobic digester</i> (<i>AD</i>), some supplemental agricultural or non- agricultural materials may be imported to help boost biogas production. This necessitates the need for larger storage for the resulting <i>digestate</i> from the <i>AD</i> system.
	system <u>and</u> there are imported supplemental materials, then for Factor B, use the greater of the NU capacity for <i>livestock</i> on the <i>lot</i> , versus the NU capacity of <u>all</u> storage volumes using 19.8 m ³ /NU (700 ft ³ /NU) from Table 1.	In MDS II, for Factor B, use the greater of the NU capacity for <i>livestock</i> on the <i>lot</i> , versus the NU capacity of the proposed storage volume using 19.8 m ³ /NU (700 ft ³ /NU) from Table 1.
	For example, a 100 NU swine farm has an <i>AD</i> system and imports supplemental materials to boost biogas production. There is just one storage of 2,376 m ³ capacity. For Factor B, this is 2,376 m ³ ÷ 19.8 m ³ /NU = 120 NU, which is greater than 100 NU for swine. Use 120 NU in Table 2 to determine Factor B.	For Factor C, use the increased NU capacity of the proposed storage volume compared to the NU capacity for the <i>livestock</i> on the <i>lot</i> . continued

Implementation Guideline	MDS I	MDS II
21. Storages for <i>digestate</i> from an <i>anaerobic digester</i> and how to apply Factors B and C continued		continued For example, a 100 NU swine farm proposes to build 2,376 m ³ of storage for manure and other imported materials treated by an <i>AD</i> system.
		For Factor B, this is 2,376 m ³ ÷ 19.8 m ³ /NU = 120 NU, which is greater than 100 NU for swine. Use 120 NU in Table 2 to determine Factor B.
		For Factor C, the NU capacity of the proposed storage is 120 NU compared to 100 NU for swine. The increase is 120 NU–100 NU = 20 NU, or 20 NU/100 NU x 100 = 20%. Use 20% in Table 3 to determine Factor C.
22. Anaerobic digesters and co-substrate input tanks	Co-substrate input tanks (CSIT) may be installed to store imported agricultural or non-agricultural materials prior to input into an anaerobic digester (AD). The required MDS I separation from a <i>CSIT</i> and/or <i>AD</i> is 125 m regardless of size or type, and whether greater or lesser MDS I setbacks are calculated based on the <i>livestock</i> NU capacity or potential NU capacity based on <i>tillable</i> <i>hectares</i> .	Co-substrate input tanks (CSIT) may be installed to store imported agricultural or non-agricultural materials prior to input into an <i>anaerobic digester (AD).</i> The required MDS II separation from a <i>CSIT</i> and/or <i>AD</i> , regardless of size or type, is: • 125 m for Type A land uses • 250 m for Type B land uses • 125 m to the nearest neighbour's house • 13 m to the nearest <i>lot</i> line • 25 m to the nearest road allowance

Implementation Guideline	MDS I	MDS II
Guidenne		

MDS Formulae and Factors

The following implementation guidelines provide direction on the calculation of the MDS Formulae for MDS I and MDS II. In addition, they provide a brief summary of the Factors used to calculate MDS, and specific considerations related to the calculation.

23. Calculating building base distance, 'F'	F = Factor A x B x D x E (Note: Factor C <u>not</u> used in MDS I)	F = Factor A x B x C x D (Note: Factor E <u>not</u> used in MDS II)
24. Calculating permanent <i>manure storage</i> base distance, 'S'	'S' is <u>not</u> calculated, but read directly from Table 6 by first calculating the building base distance 'F', then choosing the new added 'Permanent Manure Storage Type' from Table 5.	
25. Storage base distances ('S') when F>1000 metres	If 'F' > 1000 m, the Storage Base Distance 'S' is the same as the Building Base Distance, 'F' as noted in Table 6.	
26. Factor A - Odour Potential Factor	Factor A is based on the type of <i>livestock</i> and its relative potential for emanating offensive odours. The higher the Factor A, the higher the odour potential, and the higher the resulting MDS separation distances, all other things being equal. See Table 1.	
27. Factor B - <i>Nutrient Units</i> Factor	Factor B is based on the number, or equivalent number, of <i>Nutrient Units (NU)</i> in <i>housing capacity</i> at a <i>livestock facility</i> . The higher the number of NU, the higher the Factor B, and the higher the resulting MDS separation distances, all other things being equal. See Table 2. In determining Factor B, it may be required to interpolate a value from Table 2. Interpolated values for Factor B should not include more than two decimal places, and may need to be rounded accordingly.	
28. Factor C - Orderly Expansion Factor	Does not apply for MDS I	Factor C only applies for MDS II, and is based on the percentage increase in the number of NU for the proposed construction. The higher the percentage increase, the higher the Factor C, and the higher the resulting MDS II, all things being equal. Expansion of a <i>livestock facility</i> is a necessary and typical process for the economic development of most farm operations, and can reasonably be expected over time. Continued

Implementation Guideline	MDS I	MDS II
Bactor 28. Factor C - Orderly Expansion Factor continued		 continued Factor C allows for future expansion. Factor C is the highest it can be for the <i>first livestock</i> building (or first permanent <i>manure storage</i> where no <i>livestock</i> are housed) on a <i>lot</i>, resulting in a building location that will allow most subsequent <i>livestock</i> buildings to be built within a reasonable building envelope. Factor C is smallest for no increase in NU (0% increase), or decreases in NU ('negative' increase), rare on most farms, except when replacing an old building with little to no additional <i>livestock</i> capacity, downsizing, or when installing storages to increase manure holding capacity to prevent spreading at inappropriate times of the year. For the purposes of determining Factor C, all <i>first livestock facilities</i> are to be calculated at Factor C = 1.14. Where an <i>existing livestock facility</i> is to be expanded, the percentage increase shall be calculated using: the total additional <i>Nutrient Units</i> proposed as the numerator, and the total existing <i>Nutrient Units</i> as the denominator. For example, an <i>existing livestock facility</i> urrently has 200 <i>nutrient units</i> and proposes to add 100 additional <i>Nutrient Units</i>. In this case percentage increase, would be calculated as 100 NU divided by 200 NU and then multiplied by 100 for a value of 50 %
		(100/200) x 100 = 50 % continued

Implementation Guideline	MDS I	MDS II
28. Factor C - Orderly Expansion Factor continued		continued Where a <i>livestock facility</i> is to be expanded, and one or more building permits to establish or expand that <i>livestock facility</i> were already issued within the previous three years, the percentage increase shall be calculated using: the total additional <i>Nutrient Units</i> established or added by building permit issued during the previous three year period, plus the proposed expansion, as the numerator; and the total existing <i>Nutrient Units</i> prior to the previous three year period as the denominator. For example, an <i>existing livestock</i> <i>facility</i> currently has 200 <i>Nutrient Units</i>
		facility currently has 200 Nutrient Units and proposes to add 100 additional Nutrient Units. A building permit for this livestock facility was issued 2 years ago, and increased the size of the operation at that time from 100 Nutrient Units to 200 Nutrient Units. In this case, percentage increase would be calculated as 200 NU (100 NU for this expansion plus 100 NU for expansion 2 years ago) divided by 100 NU (the total capacity of the <i>livestock</i> facility 3 years ago) and then multiplied by 100 for a value of 200%.
		See Table 3 for further information. In determining Factor C, it may be required to interpolate a value from Table 3. Interpolated values for Factor C should not include more than four decimal places, and may need to be rounded accordingly.

Implementation Guideline	MDS I	MDS II
29. Factor D - Manure or Material Form in Permanent Storage Factor	Factor D is based on the type of manure or material and its relative potential for emanating offensive odours. The higher the Factor D, the higher the odour potential, and the higher the resulting MDS separation distance, all other things being equal. See Table 1.	
30. Factor E - Encroaching Land Use Factor	Factor E is based on the degree of effect an encroaching land use might have on an <i>existing livestock facility</i> . The higher the encroachment factor, the higher the potential effect on a <i>livestock facility</i> , and the higher the resulting MDS I separation distance, all other things being equal. See Table 4.	N/A
31. Calculating weighted averages for Factor A	In MDS I, Factor A <u>may</u> require a weighted average, if there are more than one type of <i>livestock</i> housed with differing values for Factor A. For example, if an adjacent <i>livestock</i> <i>facility</i> houses 50 NU of chicken broilers with Factor A = 0.7, and 100 NU of swine feeders with Factor A = 1.2, then the weighted average Factor A is: $[(50 \times 0.7)+(100 \times 1.2)]+(50+100) = 1.03$ When calculating a weighted average, the value of Factor A should not include more than two decimal places, and may need to be rounded accordingly.	In MDS II, Factor A <u>may</u> require a weighted average, if more than one type of <i>livestock</i> is <u>added</u> with differing values for Factor A. For example, if a farmer proposes to <u>add</u> 50 NU of chicken broilers with Factor A = 0.7, and 100 NU of swine feeders with Factor A = 1.2, to a <i>livestock facility</i> , then the weighted average Factor A is: $[(50 \times 0.7)+(100 \times 1.2)]+(50+100) = 1.03$ When calculating a weighted average, the value of Factor A should not include more than two decimal places, and may need to be rounded accordingly.
32. Calculating weighted averages for Factor D	In MDS I, Factor D <u>may</u> require a weighted average, if there are more than one type of <i>livestock</i> housed with differing values for Factor D. For example, if an adjacent <i>livestock</i> <i>facility</i> houses 50 NU of chicken broilers with Factor D = 0.7, and 100 NU of swine feeders with Factor D = 0.8, then the weighted average Factor D is: [(50 x 0.7)+(100 x 0.8)]÷(50+100) = 0.77 continued	In MDS II, Factor D <u>may</u> require a weighted average, if more than one type of <i>livestock</i> is <u>added</u> with differing values for Factor D. For example, if a farmer proposes to <u>add</u> 50 NU of chicken broilers with Factor D = 0.7, and 100 NU of swine feeders with Factor D = 0.8, then the weighted average Factor D is:

Implementation Guideline	MDS I	MDS II
32. Calculating weighted averages for Factor D continued	continued When calculating a weighted average, the value of Factor D should not include more than two decimal places, and may need to be rounded accordingly.	continued [(50 x 0.7)+(100 x 0.8)]÷(50+100) = 0.77 When calculating a weighted average, the value of Factor D should not include more than two decimal places, and may need to be rounded accordingly.
33. Tillable hectares	 In MDS I, Factor B is based on the greater of the existing Nutrient Unit housing capacity of the livestock facility, or the potential Nutrient Unit housing capacity of the livestock facility based on the product of tillable hectares on that lot multiplied by 7.5 Nutrient Units/tillable hectare (to a maximum of 300 Nutrient Units). However, for settlement area expansions only, MDS I is based on the existing Nutrient Unit housing capacity and not tillable hectares. See the following examples: For example: 20 NU operation on 10 hectares; housing capacity is 75 NU 20 NU operation on 45 hectares: housing capacity is 300 NU 300 NU operation on 45 hectares; housing capacity is 300 NU 300 NU operation on 45 hectares: housing capacity is 300 NU 	N/A
34. Rounding of MDS calculations	All resulting calculated separation distances a	are rounded <u>up</u> to the nearest metre.

Type A and B Land Uses

These implementation guidelines outline considerations regarding the interpretation of Type A and Type B land uses for MDS I and II, and how different land uses should be treated in MDS. They also provide specific direction on exceptions to Type A and Type B land uses.

35. Type A land uses	 Type A land uses are typically characterized by uses that have a lower density of human occupancy, habitation or activity. For the purposes of MDS I, Type A land uses include applications to rezone or redesignate agricultural lands for <i>industrial</i>, <i>agricultural-related or recreational use – low intensity</i> purposes. Type A land uses include applications to permit: construction of a <i>dwelling</i> on an existing <i>lot</i> where the municipality has determined that MDS I should be applied, or the creation of up to three <i>lots</i> either by consent or plan of subdivision 	 Type A land uses are typically characterized by uses that have a lower density of human occupancy, habitation or activity. For the purposes of MDS II, Type A land uses include areas zoned or designated <i>industrial, agricultural-related or recreational use – low intensity.</i> Type A land uses include <i>residential dwellings</i> on <i>lots</i> zoned agriculture, rural <i>residential, residential, or</i> other similar zoning. This includes existing <i>residential</i> uses on separate <i>lots</i> not recognized through Official Plan designation as a <i>residential</i> area.
36. Type B land uses	 Type B land uses are typically characterized by uses that have a higher density of human occupancy, habitation or activity. For the purposes of MDS I, Type B land uses include applications to rezone or redesignate agricultural lands for <i>residential</i>, <i>institutional</i>, <i>recreational use – high intensity</i>, <i>commercial or settlement area</i> purposes. Type B land uses include applications to permit: creation of <i>residential</i> subdivisions in rural areas, or expansion of a <i>settlement area</i>, or creation of <i>multiple residential</i> development, or the creation of a <i>lot</i> which results in a <i>rural residential cluster</i> 	Type B land uses are typically characterized by uses that have a higher density of human occupancy, habitation or activity. For the purposes of MDS II, Type B land uses include areas zoned or designated settlement area, recreational use – high intensity, institutional, or commercial. Type B land uses include areas designated in an Official Plan as residential for: • residential subdivisions, or • multiple residential, or • estate residential development

Implementation Guideline	mplementation MDS I MDS II	
37. Application to <i>settlement areas</i>	MDS I does not apply to proposed non- agricultural uses in approved settlement area designations. However, municipalities have the option to apply MDS I from <i>livestock facilities</i> within a settlement area designation. The application of MDS I will take its direction from the applicable municipal planning documents.	Where municipalities permit <i>first</i> or <i>expanded livestock facilities</i> within approved <i>settlement area</i> designations, municipalities have the option, but are strongly encouraged to apply MDS II. The application of MDS II will take its direction from the applicable municipal planning documents.
38. Cemeteries	For the purposes of MDS I, cemeteries should be considered a Type B land use, as they are an <i>institutional use</i> .	For the purposes of MDS II, cemeteries should be considered a Type B land use, as they are an <i>institutional use</i> . However, cemeteries may be treated as a Type A land use when the cemetery is closed and receives low levels of visitation. Cemeteries such as this should be clearly identified in the municipality's planning documents.
39. Rural residential clusters	For the purposes of MDS I, <i>lot</i> creation which results in a <i>rural residential cluster</i> should be considered a Type B land use.	For the purposes of MDS II, <i>rural</i> <i>residential clusters</i> should be considered a Type A land use, except where they have been identified and designated in an Official Plan.
40. Rear <i>lot</i> lines, side <i>lot</i> lines, and road allowances	N/A	In addition to Type A and Type B land uses, MDS II setbacks are calculated from rear <i>lot</i> lines, side <i>lot</i> lines, and road allowances. Rear and side <i>lot</i> line MDS II setbacks are calculated as 0.1 x the Building Base Distance 'F' and Storage Base Distance 'S'. continued

Implementation Guideline	MDS I	MDS II
AO. Rear lot lines, side lot lines, and road allowances continued		 Continued For example, an MDS II calculation yields values of 100 metres for Building Base Distance 'F' and 123 metres for Storage Base Distance 'S'. The required setback for the <i>livestock facility</i> from the <i>lot</i> lines would be 10 metres (100 × 0.1). The required setback for the <i>manure storage</i> from the <i>lot</i> lines would be 12.3 metres (123 × 0.1). This value should be rounded to the nearest whole number, so in this instance, the setback for the <i>manure storage</i> would be 12 metres. Under no circumstances should the MDS II setback from a rear or side <i>lot</i> line exceed 30 metres, see Implementation Guideline #44. Road allowance MDS II setbacks are calculated as 0.2 x the Building Base Distance 'F' and Storage Base Distance 'S'. The required setback for the <i>livestock facility</i> from the road allowance would be 20 metres (100 × 0.2). The required setback for the <i>manure storage</i> from the road allowance would be 20 metres (123 × 0.2). This value should be rounded to the nearest whole number, so in this instance, the setback for the <i>manure storage</i> from the road allowance would be 20 metres (100 × 0.2). The required setback for the <i>manure storage</i> from the road allowance would be 24.6 metres (123 × 0.2). This value should be rounded to the nearest whole number, so in this instance, the setback for the <i>manure storage</i> would be 25 metres.

Applying MDS - Measurement of MDS Setbacks

The following implementation guidelines provide direction on measurement of MDS setbacks between *livestock facilities*, and other existing or proposed development, *lot* lines, and road allowances.

41. Measurement of MDS	For MDS I, measurements are taken as the shortest distance between the area to be rezoned or redesignated and the <i>livestock occupied portion</i> of the <i>livestock</i> <i>facility</i> (or storage).	For MDS II, measurements are taken as the shortest distance between the point of new construction for the <i>livestock occupied portion</i> of a <i>first</i> or <i>expanded livestock facility</i> and the <i>dwelling/lot</i> line/road allowance/or area zoned or designated.
42. Measurement of MDS for <i>Lot</i> Creation	For MDS I, measurements are taken as the shortest distance between the <i>lot</i> line of the <i>lot</i> being created and the <i>livestock</i> <i>occupied portion</i> of the <i>livestock facility</i> (or storage). Where larger lots may be permitted (generally greater than 1 ha), a suitable location must be identified for a 1 ha building envelope outside the MDS I setback.	N/A
43. Measurement of MDS for development on existing <i>lots</i>	Where a municipality chooses to apply MDS I to development proposed through building permit on an existing <i>lot</i> , measurements are taken as the shortest distance between the <i>dwelling</i> or other structure to be constructed and the <i>livestock occupied portion</i> of the <i>livestock facility</i> .	N/A
44. Maximum setbacks to side or rear <i>lot</i> lines	N/A	The maximum required setback from any <i>livestock facility</i> to side or rear <i>lot</i> lines is 30 m.

Applying MDS - Minor Variances

This section of the MDS Formulae implementation guidelines speak to specific issues regarding minor variances applications under the *Planning Act*.

45.Affects of wind, etc. on MDS	The direction of prevailing wind, surrounding topography, and presence of trees, berms, or other screening do not affect MDS calculations, but could be elements considered in Minor Variance applications.	
46. Reducing MDS setbacks and minor variances	MDS I setbacks should not be reduced except in accordance with these implementation guidelines. Where a municipality applies MDS I to development on existing <i>lots</i> , minor variances to MDS I distances can be considered based on site specific circumstances. Circumstances that meet the intent, if not the precise distances of MDS I, or mitigate environmental impacts, may warrant further consideration.	Minor variances to MDS II distances can be considered based on site specific circumstances. Circumstances that meet the intent, if not the precise distances of MDS II, or mitigate environmental impacts, may warrant further consideration.

MDS I CALCULATION FORM

The following outlines the 10 Steps on how to calculate setbacks to all adjacent *livestock facilities*, reasonably expected to be impacted by an applicant's proposed development. The applicable topics found in the Implementation Guidelines Chart on pages 1 to 17 and the applicable Tables are noted in the steps below.

Step 1	Location and contact information	Fill in the pertinent information about the applicant, and each adjacent <i>livestock facility</i> within 1000 m or more, of the proposed development. Each <i>livestock facility</i> must be on its own separate <i>lot</i> and should be treated as separate calculations. All barns and structures located on one <i>lot</i> should be treated as part of the same <i>livestock facility</i> . Implementation Guidelines #1 through #16 provide direction on the general rules and application of the Minimum Distance Separation Formulae.
Step 2	Livestock facility animal/material types	For the first <i>livestock facility</i> identified in Step 1, fill in all of its existing animal/material types, descriptions, the total maximum <i>housing capacity</i> , the number of animals/material per <i>Nutrient Unit</i> (NU) and associated manure forms. Information on the existing animal/material types, descriptions, the total number of animals/material, and associated manure forms should be obtained from the owner of the <i>livestock facility</i> . It may be necessary to verify this information independently. Information on the number of animals/material per <i>Nutrient Unit</i> (NU) can be determined from Table 1. Implementation Guidelines #17 through #20 provide guidance on determining <i>livestock facility</i> capacity. Implementation Guidelines #21 and #22 provide direction on dealing with <i>anaerobic digesters</i> .
Step 3	Existing <i>Nutrient Units</i> (NU)	Calculate the existing total maximum NU capacity of the <i>livestock facility</i> by dividing existing capacity of each animal/material type by the number of animals/material per NU as found in Table 1. Then, add all the existing NU together for all the types of animal/material present, to obtain the total maximum number of NU.

Step 4	Weighted Factor A	Determine Factor A (Odour Potential Factor) for each animal/material type present, from Table 1, and fill in the calculation form. If necessary, calculate the weighted average for Factor A, if Factor A is not the same for all animals/materials listed. See Implementation Guidelines #26 and #31 for further direction.
Step 5	Weighted Factor D	Determine Factor D (Manure Form in Permanent Storage Factor) from Table 1, for each animal/material type present, and fill in the calculation form. If necessary, calculate the weighted average Factor D, if Factor D is not the same for all animals/materials listed. See Implementation Guidelines #29 and #32 for further direction.
Step 6	<i>Tillable hectares</i> and potential NU	Fill in the maximum <i>tillable hectares</i> of land on the <i>lot</i> where the <i>livestock facility</i> is located, based on information obtained from the owner of the <i>livestock facility</i> . It may be necessary to verify this information independently. Calculate the potential total number of NU, which equals: # of <i>tillable hectares</i> x 7.5, up to a maximum of 300 NU. Implementation Guidelines #33 and #17 provide more specific information.
Step 7	Factor B and existing vs. potential NU	Compare the total number of existing NU calculated in Step 3 with the total number of potential NU calculated in Step 6. Using the greater of these two numbers, determine Factor B from Table 2, and fill in the correct space on the calculation form. In some circumstances, it will be necessary to interpolate Factor B from Table 2, when the number of NU is not specifically identified in the table. Implementation Guideline #27 provides more specific direction on Factor B.
Step 8	Determine Factor E	Determine and fill in Factor E (Encroachment Land Use Factor) on the calculation form. Factor E can be determined from Table 4. Implementation Guidelines #30 and #35 through #39 provide specific direction on Factor E and the determination of Type A and Type B land uses.
Step 9	F, Building Base Distance	Calculate F (Building Base Distance) = (Factor A) x (Factor D) x (Factor B) x (Factor E), which is the required MDS I setback from the proposed development to the nearest barn of the <i>livestock facility</i> . For further information, see Implementation Guidelines #23 and #34.

Step 10	S, <i>Manure Storage</i> Base Distance	Establish S (<i>Manure Storage</i> Base Distance) by first using Table 5 to choose the existing storage at the <i>livestock</i> <i>facility</i> with the highest odour potential: Very Low, Low, Medium, and High. Then, enter Table 6 under the appropriate column and read across using 'F' calculated from Step 9. It may be necessary to interpolate. S, is the required MDS I setback from the proposed development to the nearest <i>manure storage</i> at the <i>livestock facility</i> . Implementation Guidelines #24 and #25 provide further information. Implementation Guidelines #21 and #22 provide further information on dealing with <i>anaerobic</i> <i>digesters</i> . Steps 2 through 10 should be completed for any other <i>livestock facilities</i> present, in accordance with Implementation Guideline #6.
Now What?	Using calculated MDS	The calculated values of MDS can now be used in the context of the land use planning application for which they have been prepared. Implementation Guidelines #35 through #40 provide direction around issues regarding Type A and Type B land uses. Implementation Guidelines #41 through #44 provide direction around issues of measurement of MDS setbacks, and, Implementation Guidelines #45 and #46 provide direction on issues regarding minor variances.

MDS I CALCULATION BLANK FORM

Evaluator: ______
Date: ______
File Number: ______
Contact Information:

	Applicant Information	Owner of Adjacent Livestock Facility #1	Owner of Adjacent <i>Livestock Facility</i> #2, etc
File Name			
Last Name			
Farm/Company			
Address			
City/Town			
Province			
Postal Code			
Upper Tier			
Lower Tier			
Lot			
Concession			
911 Number			
Roll Number			
Telephone			
Fax			
Email			

MDS I CALCULATION BLANK FORM

Animal Type or Material	Description	Number per NU	Manure Form	Existing Maximum Housing Capacity		Factor A	Factor D		
Total Number of NU									
Factor A (Odour Potential Factor)a weighted average may be necessary									
Factor D (Manure Form Factor)a weighted average may be necessary									
Factor B (<i>Nutrient Units</i> Factor)									
Factor E (Encr	roaching Land Use I	Factor)							
Maximum tillable hectares on the lot with the livestock facilities X =							(Maximum		
F (Building Base Distance, m) = Factor A x Factor D x Factor B x Factor E									
S (Manure Storage Base Distance, m)									
Now What? Repeat MDS calculation process as appropriate for other <i>livestock facilities</i> in the Apply calculated MDS in the context of the land use planning application for which were prepared.									

MDS II CALCULATION FORM

The following outlines the 10 Steps on how to calculate setbacks to all development reasonably expected to be impacted by a proposed *first* or *expanded livestock facility*. Applicable topics are found in the Implementation Guidelines Chart on pages 1 to 17 and applicable Tables are noted.

Step 1	Location and contact information	Fill in the pertinent information about the applicant who is proposing a <i>first</i> , or <i>expanded, livestock facility.</i> Implementation Guidelines #1 through #16 provide direction on the general rules and application of the Minimum Distance Separation Formulae.
Step 2	<i>Livestock facility</i> animal/material types	Fill in all existing, and proposed to be added, animal/material types, descriptions, the total maximum <i>housing capacity</i> , the number of animals/material per <i>Nutrient Unit</i> (NU) and associated manure forms. Table 1 and Implementation Guidelines #17 through #20 provide guidance on determining <i>livestock facility</i> capacity. Implementation Guidelines #21 and #22 provide direction on dealing with <i>anaerobic digesters</i> .
Step 3 Existing, and proposed to be added <i>Nutrient Un</i> (NU)		Calculate the existing, and proposed to be added, NU capacity of the <i>livestock facility</i> by dividing existing, and proposed to be added, capacity of each animal/material type by the number of animals/material per NU as found in Table 1. Then, add all the existing, and proposed to be added, NU together for all the types of animal/material present, to obtain the total number of NU.
Step 4	Weighted Factor A	Determine Factor A (Odour Potential Factor) from Table 1, for <u>only</u> each animal/material type proposed to be <u>added</u> , and fill in the calculation form. If necessary, calculate the weighted average for Factor A, if Factor A is not the same for all animals/materials added. See Implementation Guidelines #26 and #31 for further direction.

Step 5	Weighted Factor D	Determine Factor D (Manure Form in Permanent Storage Factor) from Table 1, for <u>only</u> each animal/material type <u>added</u> , and fill in the calculation form. If necessary, calculate the weighted average for Factor D, if Factor D is not the same for all animals/materials added. See Implementation Guidelines #29 and #32 for further direction.
Step 6	Factor B	Determine Factor B from Table 2, based on the Total NU to be housed at the <i>livestock facility</i> , and fill in the space on the calculation form. In some cases, it will be necessary to interpolate Factor B from Table 2, when the number of NU is not specifically identified in the table. Implementation Guideline #27 provides more specific direction on Factor B.
Step 7	Determining Percentage Increase for <i>livestock facility</i>	 Determine if a building permit was issued on this <i>lot</i> in the past 3 years that increased the <i>livestock</i> capacity of the <i>livestock facility</i>. If 'No', use Approach (i) below to calculate Percentage Increase. If 'Yes', use Approach (ii) below to calculate Percentage Increase. Approach (i) Enter total Added NU as calculated in Step 3 above. Enter total Existing NU as calculated in Step 3 above. If total Existing NU is zero (i.e. this is the <i>First Livestock Facility</i> on the <i>lot</i>), then the Percentage Increase is considered to be at its maximum, or 700% as per Table 3. If total Existing NU is not zero, divide Added NU by Existing NU and multiply by 100. This value is the Percentage Increase is 'negative', but considered to be at its minimum, or 0% as per Table 3. Approach (ii) Enter total Added NU as calculated in Step 3 above, as well as the total number of NU added in the past 3 years by previous building permit(s). Enter total Existing NU of the <i>livestock facility</i> as it was 3 years ago, prior to the current application date. If total Existing NU 3 years ago was zero, then the <i>livestock facility</i> in this current application <u>and</u> the one(s) constructed in the past 3 years ago was not zero, divide Added NU

Step 7 continued		continued in this application <u>plus</u> Added NU over the past 3 years, by Existing NU 3 years ago and multiply by 100. This value is the Percentage Increase. In rare cases of downsizing, the Added NU would actually be 'negative'. In this case, the Percentage Increase is 'negative', but considered to be at its minimum, or 0% as per Table 3. Implementation Guideline #28 provides further direction and assistance on calculating Percentage Increase, and establishing Factor C.
Step 8	Factor C	Determine and fill in Factor C (Orderly Expansion Factor) on the calculation form, based on the Percentage Increase calculated in Step 7. Factor C can be determined from Table 3. In some instances, it may be necessary to interpolate Factor C. Implementation Guideline #28 provides direction on calculating the Percentage Increase in NU for the proposed construction.
Step 9	F, Building Base Distance	Calculate F (Building Base Distance) = (Factor A) x (Factor D) x (Factor B) x (Factor C), which is the required MDS II setback from <u>all</u> proposed <i>first</i> or <i>expanded livestock</i> <i>facilities</i> to the nearest development. For further information, see Implementation Guidelines #23 and #34.
Step 10	S, <i>Manure Storage</i> Base Distance	Establish S (<i>Manure Storage</i> Base Distance) by first using Table 5 to choose the proposed new storage at the <i>livestock facility</i> with the <u>highest</u> odour potential: Very Low, Low, Medium, and High. Then, enter Table 6 under the appropriate column and read across using 'F' calculated from Step 9. It may be necessary to interpolate from the table. 'S' is the required MDS II setback from <u>all</u> proposed new storages to the nearest development. Implementation Guidelines #24 and #25 provide further information. Implementation Guidelines #21 and #22 provide further information on dealing with <i>anaerobic digesters</i> .
Now What?	Using calculated MDS	The calculated values of MDS II can now be applied to the building permit application. Implementation Guidelines #35 through #39 provide direction around Type A and Type B land uses. For Type A land uses, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 1.0 to determine the required MDS setback. For Type B land uses, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 2.0 to determine the required MDS setback. Implementation Guideline #40 provides direction around setbacks from rear <i>lot</i> lines, side <i>lot</i> lines and road allowances. For rear and side <i>lot</i> lines, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 0.1 to determine the required continued

Now What? continued	continued MDS setback. In accordance with Implementation Guideline #44, the required MDS setback from a rear or side <i>lot</i> line should never exceed 30 metres. For road allowances, the values of Building Base Distance 'E' and Storage Base
	Distance 'S' should be multiplied by 0.2 to determine the required MDS setback. Implementation Guidelines #41 through #44 provide direction around issues of measurement of MDS II setbacks. Implementation Guidelines #45 and #46 provide direction on issues regarding minor variances.

MDS II CALCULATION BLANK FORM

Evaluator: _____
Date: _____
File Number: _____
Contact Information:

	Applicant Information	Owner of Adjacent <i>Livestock Facility</i> #1	Owner of Adjacent <i>Livestock Facility</i> #2, etc
File Name			
Last Name			
Farm/Company			
Address			
City/Town			
Province			
Postal Code			
Upper Tier			
Lower Tier			
Lot			
Concession			
911 Number			
Roll Number			
Telephone			
Fax			
Email			

MDS II CALCULATION BLANK FORM

Animal Type or Material	Description	Number per NU	Manure Form	Existing Maximum Housing Capacity	Exisiting NU	Proposed Maximum Housing Capacity	Added NU	Total NU	Factor A	Factor D
Totals		•		•						
Factor A	(Odour Potentia	al Factor) v	weighted a	average may	y be necess	ary	-			
Factor D	(Manure Form	Factor) w	eighted av	erage may	be necessar	у				
Factor B	(Nutrient Units	Factor)								
Has a bu <i>livestock</i>	ilding permit be capacity? No? `	en issued Yes? <i>If No</i>	for the <i>liv</i> , proceed	estock facil to Approac	ity on this pr h (i); if Yes,	roperty, in the <i>proceed to A</i>	e last 3 ye pproach (i	ars that ii)	has increa	ased its
Approac	h (i) - No Buildi	ng Permits	s in Last 3	3 Years	Approach	ı (ii) - Building	g Permit(s) issued	in Last 3	Years
Calculatio	on of Percentag	e Increase	9		Calculatio	n of Percenta	ige Increa	se		
Total 2 -	Total Added NU	J (From Ab	oove)		Total 2 - Total Added NU (From Above) + Total Added NU from building permit(s) issued in the last 3 Years					
Total 1 -	Total Existing N	U (From A	lbove)		Total 1 - 1 3 Years A	Total Existing I Ago	NU at <i>Live</i>	stock Fa	cility -	
lf Total 1 <i>Livestock</i>	= Zero - Treat <i>Facility</i>	as a <i>First</i>			lf Total 1 Treat as a	= Zero - a First Livesto	ock Facility	,		
% Increas	se: (Total 2/Tota	al 1) x 100	כ		% Increas	e: (Total 2/T	otal 1) x 1	00		
Factor C	(Orderly Expans	sion Factor	r]							
F (Buildin	g Base Distanc	e, m) = Fa	nctor A x F	actor D x F	actor B x Fa	actor C				
S (Manur	re Storage Base	e Distance	, m)							
Now Wh	Now What? Apply MDS calculation to building permit application as appropriate. For Type A land uses, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 1.0 to determine the required MDS setback. For Type B land uses, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 2.0 to determine the required MDS setback. Implementation Guideline #40 provides direction around setbacks from rear <i>lot</i> lines, side <i>lot</i> lines and road allowances. For rear and side <i>lot</i> lines, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 0.1 to determine the required MDS setback. In accordance with Implementation Guideline #44, the required MDS setback from a rear or side <i>lot</i> line should never exceed 30 metres. For road allowances, the values of Building Base Distance 'F' and Storage Base Distance 'S' should be multiplied by 0.2 to determine the required MDS setback.									

FACTOR TABLES

Table 1: Factor A (Odour Potential) and Factor D (Manure or Material Form in Storage Facility)

Animal Type or	escription Numbe per NU		Factor A	Manure or Material Form in Permanent Storage		
Material				Liquid Manure: Factor D = 0.8 < 18% Dry Matter	Solid Manure: Factor D = 0.7 18 - 100% Dry Matter	
Swine	Sows with litter, dry sows/boars Segregated Early Weaning (SEW)	3.33		Most systems have liquid manure stored	Systems with solid manure inside on	
	Sows with litter, dry sows or boars (non-SEW)	3.5	1.0	under the barn slats for short or long	deep bedded packs, or with scraped alleys	
	Breeder gilts (entire barn designed specifically for this purpose)	5		periods, or in storages located outside		
	Weaners (7 kg – 27 kg)	20	1.1			
	Feeders (27 – 105 kg)	6	1.2			
Dairy Cattle ¹	Milking-age cows (dry or milking) - Large-framed; 545 kg – 636 kg (e.g. Holsteins)	0.7		Free-stall barns with minimal bedding, or sand bedding, or	Tie-stall barns with lots of bedding, or loose housing with	
	- Medium-framed; 455 kg – 545 kg (e.g. Guernseys)	0.85		tie-stall barns with minimal bedding &	deep bedded pack, and with or without outside yard access	
	- Small-framed; 364 kg – 455 kg (e.g. Jerseys)	1	0.7	milking centre washwater added		
	Heifers (5 months to freshening) - Large-framed; 182 kg – 545 kg (e.g. Holsteins) - Medium-framed: 148 kg – 455 kg	2				
	(e.g. Guernseys) - Small-framed; 125 kg – 364 kg	2.9				
	[Jerseys] Calves (0 – 5 months) - Large-framed; 45 kg – 182 kg (a.g. Haletaine)	6		Free-stall barns with minimal bedding, or	Bedded pens or stalls or heavily bedded calf	
	- Medium-framed; 39 kg – 148 kg (e.g. Guernseys)	7	0.7	tie-stall barns with minimal bedding &	outside	
	- Small-framed; 30 kg – 125 kg (Jerseys)	8.5		milking centre washwater added		
Beef Cattle	Cows, including calves to weaning (all breeds)	1	0.7	N/A Bedded pack barns with or without	Bedded pack barns with or without	
	Feeders (7 – 16 months)	3		Slatted floor systems,	outside yard access	
	Backgrounders (7 – 12.5 months)	3	0.8	or barns with minimal		
	Shortkeepers (12.5 – 17.5 months)	2		bedding & yard scraped to a liquid storage		

Animal Type, or	Description	Number per NU	Factor A	Manure or Material Form in Permanent Storage		
Material				Liquid Manure: Factor D = 0.8 Less than 18% Dry Matter	Solid Manure: Factor D = 0.7 18 to 100% Dry Matter	
Veal	Milk-fed Grain-fed	6	1.1 0.8	Slatted floors or slatted stall system	Heavily bedded pack barns	
Goats	Does & bucks (for meat kids; includes unweaned offspring & replacements) Does & bucks (for dairy; includes unweaned offspring & replacements) Kids (dairy or feeder kids)	8 8 20	0.7	N/A	Heavily bedded pack barns	
Sheep	Ewes & rams (for meat lambs; includes unweaned offspring & replacements) Ewes & rams (dairy operation; includes unweaned offspring & replacements) Lambs (dairy or feeder lambs)	8 6 20	0.7	N/A	All sheep systems	
Horses	Large-framed, mature; > 681 kg (including unweaned offspring) Medium-framed, mature; 227 kg – 680 kg (including unweaned offspring) Small-framed, mature; < 227 kg (including unweaned offspring)	0.7 1 2	0.7	N/A	All horse systems	
Chickens	Layer hens (for eating eggs; after transfer from pullet barn) Layer pullets (day olds until transferred	150 500	1.0 0.7	Birds in cages, manure belts, no drying of manure, water added	Birds in cages, manure belts & drying, or floor	
	Broiler breeder growers (males/females transferred out to layer barn)	300	0.7	N/A	Bedded floors	
	Broiler breeder layers (males/females transferred in from grow Broilers on an 8 week cycle Broilers on a 9 week cycle Broilers on a 10 week cycle Broilers on a 12 week cycle Broilers on any other cycle, or if unknown, use 24.8 m ² /NU	100 er barn) 350 300 250 200 24.8 m ²	0.7	N/A N/A	Cage or slatted floor systems Bedded floor systems	
Turkeys	Turkey pullets (day old until transferred to layer turkey barn) Turkey breeder layers (males/females transferred in from grower barn)	267 67				
	Breeder toms Broilers (day olds to 6.2 kg) Hens (day olds up to 6.2 kg to 10.8 kg; 7.5 kg is typical) Toms (day olds to over 10.8 to 20 kg; 14.5 kg is typical)	45 133 105 75	0.7	N/A	Bedded floor systems	
	unknown, use 24.8 m ² /NU	24.8 m ²				

_

Animal Type, or	Description	Number per NU	Factor A	Manure or Material Form in Permanent Storage		
Material				Liquid Manure: Factor D = 0.8 Less than 18% Dry Matter	Solid Manure: Factor D = 0.7 18 to 100% Dry Matter	
Quail	Use 24.8 m ² /NU	24.8 m ²	0.7	N/A	Bedded floor systems	
Partridge	Use 24.8 m ² /NU	24.8 m ²		,		
Pheasants	Use 24.8 m ² /NU	24.8 m ²	_			
Squab	Use 24.8 m ² /NU	24.8 m ²				
Rheas	Adults (includes replacements & market birds)	13				
Emus	Adults (includes replacements & market birds)	12				
Ostriches	Adults (includes replacements & market birds)	4				
Ducke	Poking	105		Mine mach	Roddod floon systems	
DUCKS		705 24 g m ²	- 0.0	flooping systems	Dedded hoor systems	
Geese	Use 24.8 m ² /NU	24.8 m ²	_	liooning systems		
Rabbits	Breeding females (including males, replacements & market animals)	eeding females (including males, 40 0.8 N/A	N/A	Cage or floor systems		
Chinchillas	Breeding females (including males, replacements & market animals)	320	1.0	-		
Fox	Breeding females (including males, replacements & market animals)	25				
Mink	Breeding females (including males, replacements & market animals)	90				
Bison	Adults (includes unweaned calves & replacements)	1.3		N/A		
	Feeders (170 kg – 477 kg)	4				
Llama	Adults (includes unweaned young & replacements)	5			Bedded pack barns with outside access or	
	Feeders (45 kg – 86 kg)	16	0.7		outside confinement	
Alpaca	Adults (includes unweaned young & replacements)	8			areas	
	Feeders (23 kg – 48 kg)	26				
Wild Boar	Breeding age sows (includes boars, replacements & weaned piglets to 27 kg)	5				
	Finishing boars (27 kg – 86 kg)	7			Continued	

Animal Type, or		Description	Number per NU	Factor A	Manure or Material Form in Permanent Storage		
	Material				Liquid Manure: Factor D = 0.8 Less than 18% Dry Matter	Solid Manure: Factor D = 0.7 18 to 100% Dry Matter	
	Deer	 White tailed deer Adults > 24 mo (including unweaned offspring) Feeders Red deer Adults > 24 mo (including unweaned offspring) Feeders Elk Adults > 24 mo (including unweaned offspring) Feeders Elk/deer hybrids Adults > 24 mo (including unweaned offspring) Feeders Elk/deer hybrids Adults > 24 mo (including unweaned offspring) Feeders Elk/deer hybrids Adults > 24 mo (including unweaned offspring) Feeders Fallow deer Adults > 24 mo (including unweaned offspring) Feeders 	11 21 7 14 2 6 4 10 13 23	0.7	N/A	Bedded pack barns with outside access <u>OR</u> outside confinement areas	
	Other <i>livestock</i> not listed in this table	To determine the number per NU, add up the total maximum live weight of animals and divide by the weight of animals per NU in the next column	453.6 kg (1000 lbs)	0.8	All storages with liquid manure	All storages with solid manure	
	Manure imported to a <i>lot</i> not generating <i>manure</i> ²	Maximum capacity of permanent storages at any time: solid or liquid capacity	19.8 m ³ (700 ft ³)	1.2	All storages with liquid manure	All storages with solid manure	
	Storages for <i>digestate</i> from an <i>Anaerobic</i> <i>Digester</i> (odours reduced during this process)	Maximum capacity of permanent storages at any time: solid or liquid capacity	19.8 m ³ (700 ft ³)	0.5	All storages with liquid manure	All storages with solid manure	

1. On farms with 100 milking-age cows (dry & milking), there are usually about 20 replacement calves and 80 replacement heifers.

2. Average value for typical types of manures that might be imported to a *lot*, such as poultry, dairy, beef, swine, horse or other manure.

N/A = Not Applicable

Table 2: Factor B (Nutrient Units Factor)

In using Table 2 to determine Factor B, it may be necessary to interpolate a value for Factor B. For example, you determine the total number of *nutrient units* at a *livestock facility* to be 255 NU. Table 2 provides a value for Factor B for 250 NU and for 260 NU, but not for 255 NU. The value of Factor B for 250 NU is 435 and the value of Factor B for 260 NU is 441. To determine Factor B for 255 NU interpolate between the numbers 435 and 441. In this example, the value of Factor B for 255 NU is 438.

When interpolating a value for Factor B do not include more than two decimal places. Interpolated values with more than two decimal places should be rounded accordingly. For example, if an interpolated value for Factor B is calculated as 499.238, then use a value of 499.24 for Factor B in the MDS calculation.

For operations less than 5 NU in size, do not interpolate, but use a Factor B of 150. For operations greater than 5000 NU in size, contact OMAFRA staff to determine Factor B.

Emal NU	Easter D			
	Factor B			
Up to 5	150			
6	153			
7	157			
8	160			
9	163			
10	167			
11	170			
12	173			
13	177			
14	180			
15	183			
16	187			
17	190			
18	193			
19	197			
00	200			
20	200			
21	202			
	204			
23	206			
24	208			
25	210			
26	212			
27	214			
28	216			
29	218			
30	220			
31	222			
32	224			
33	226			
34	228			
35	230			
36	232			
37	234			
38	236			
39	238			
40	240			
41	242			
42	244			
43	246			
 	2/18			

45

250

122

339

inal NU	Factor	В
46	252	
47	254	
48	256	
49	258	
50	260	
52	264	
54	268	
56	272	
58	276	
60	280	
62	282	
64	284	
66	285	
68	287	
70	289	
72	291	
74	293	
76	294	
78	296	
80	298	
82	300	
84	301	
86	303	
88	305	
90	307	
92	309	
94	310	
96	312	
98	314	
100	316	
102	318	
104	320	
106	322	
108	324	
110	326	
112	329	
114	331	
116	333	
118	335	
120	337	

F

inal NU	Factor B	
124	340	
126	342	
128	344	
130	346	
135	351	
140	355	
145	360	
150	364	
155	368	
160	372	
165	376	
170	380	
175	384	
180	388	
185	392	
190	395	
195	399	
200	402	
205	406	
210	409	
215	413	
220	416	
225	419	
230	423	
235	426	
240	429	
245	432	
250	435	
260	441	
270	447	
280	453	
290	458	
300	464	
310	469	
320	474	
330	480	
340	485	
350	490	
360	494	
370	499	
380	504	

Electron Market	E
Final NU	Factor B
390	508
400	513
410	517
420	522
430	526
440	530
450	535
460	539
470	543
480	547
490	551
500	555
520	562
540	570
560	577
580	584
600	591
620	598
640	605
660	611
680	618
700	624
750	639
800	654
850	668
900	681
950	694
1000	707
1100	731
1200	753
1300	775
1400	705
1400	915
1000	015
2000	
4000	1000
<u>4000</u>	1090
0000	1200
Greater	Contact
than	OMAFRA
5000	staff
560 580 600 620 640 680 700 750 800 850 900 950 1000 1100 1200 1200 1300 1400 1500 2000 3000 4000 5000 Greater than 5000	577 584 591 598 605 611 618 624 639 654 668 681 694 707 731 753 775 795 815 870 980 1090 1200 Contact OMAFRA staff

Table 3: Factor C (Orderly Expansion Factor)

In using Table 3 to determine Factor C, it may be necessary to interpolate a value for Factor C. For example, you determine the percentage increase at a *livestock facility* to be 155%. Table 3 provides a value for Factor C for a 150% increase, and for a 160% increase, but not for a 155% increase. The value of Factor C for a 150% increase is 0.9371 and the value of Factor C for a 160% increase is 0.9497. To determine Factor C for a 155% increase interpolate between the numbers 0.9371 and 0.9497. In this example, the value of Factor C for a 155% increase is 0.9434.

When interpolating a value for Factor C do not include more than four decimal places. Interpolated values with more than four decimal places should be rounded accordingly. For example, if an interpolated value for Factor C is calculated as 0.977643, then use a value of 0.9776 for Factor C in the MDS calculation.

For operations with a 0% increase, or a decrease, i.e. 'negative' percentage increase, use a value of 0.5000 for Factor C. Do not interpolate below a value of 0.5000. For operations with a 700% increase or greater, or for a *first livestock facility*, use a value of 1.1400 for Factor C. Do not interpolate above a value of 1.1400.

% Increase in	Factor C	% Increase in	Factor C	% Increase in	Factor C
Nutrient Units		Nutrient Units		Nutrient Units	
0% increase <u>or</u>		27%	0.6674	80%	0.8484
decreases	0.5000	28%	0.6736	85%	0.8547
('negative' increase)		29%	0.6798	90%	0.8610
1%	0.5062	30%	0.6860	95%	0.8674
2%	0.5124	31%	0.6922	100%	0.8737
3%	0.5186	32%	0.6984	105%	0.8800
4%	0.5248	33%	0.7046	110%	0.8864
5%	0.5310	34%	0.7108	115%	0.8927
6%	0.5372	35%	0.7170	120%	0.8990
7%	0.5434	36%	0.7232	125%	0.9054
8%	0.5496	37%	0.7294	130%	0.9117
9%	0.5558	38%	0.7356	135%	0.9180
10%	0.5620	39%	0.7418	140%	0.9244
11%	0.5682	40%	0.7480	145%	0.9307
12%	0.5744	41%	0.7542	150%	0.9371
13%	0.5806	42%	0.7604	160%	0.9497
14%	0.5868	43%	0.7666	170%	0.9624
15%	0.5930	44%	0.7728	180%	0.9751
16%	0.5992	45%	0.7790	190%	0.9877
17%	0.6054	46%	0.7852	200%	1.0000
18%	0.6116	47%	0.7914	300%	1.0280
19%	0.6178	48%	0.7976	400%	1.0560
20%	0.6240	49%	0.8038	500%	1.0840
21%	0.6302	50%	0.8100	600%	1.1120
22%	0.6364	55%	0.8167	700% increase,	1.1400
23%	0.6426	60%	0.8230	<u>or</u> more, or	
24%	0.6488	65%	0.8294	First Livestock	
25%	0.6550	70%	0.8357	Facility on lot	
26%	0.6612	75%	0.8420	of record.	

Table 4: Factor E (Encroaching Land Use Factor)

Encroaching Land Use	Factor E
Type A Land Use	1.1
Type B Land Use	2.2

Table 5: Permanent Manure or Material Storage Types

Solid *Manure*: 18% dry matter, or more Liquid *Manure*: Less than 18% dry matter *Digestate*: Less than 18% dry matter

Storage Odour Potential	Solid or Liquid System	Inside or Outside Livestock Facility	Number referred to in Table 6 (View images in Appendix A)	Description of permanent manure storages being sited by MDS II, or encroached upon through MDS I application
		Inside	V1	Solid, inside, bedded pack (manure accumulates under <i>livestock</i> over time)
	Solid	Outside	V2	Solid, outside, covered (cover keeps off precipitation to prevent runoff)
			V3	Solid, outside, no cover, greater than or equal 30% dry matter (manure is dry enough that a flowpath option can be used for runoff control (<i>Nutrient Management Act</i> , 2002)
Very Low			V4	Solid, outside, no cover, 18% to less than 30% dry matter, with covered liquid runoff storage (manure not dry enough to soak up precipitation, so a liquid runoff storage needed, but it has a permanent, tight cover
		Inside	V5	Liquid, inside, underneath slatted floor (manure is stored under the animals in the harn)
	Liquid	Outside	V6	(negative pressure tarp, concrete lid, inflatable dome, etc.)
			V7	Liquid, (digestate), outside, no cover (all manure has been treated through anaerobic digestion, or a similar process that reduces odours)
	Solid	Outside	L1	Solid, outside, no cover, 18% to less than 30% dry matter, with uncovered liquid runoff storage (manure not dry enough to soak up precipitation, so a liquid Low runoff storage needed, but it is uncovered, producing more odour than in V4 above)
	Liquid	Outside	L2	Liquid, outside, with a permanent floating cover (tarps, foam panels, etc.)
	Liquid	Outside	M1	Liquid, outside, no cover, straight-walled storage (usually circular or rectangular concrete, or steel storages)
Medium			M2	Liquid, outside, roof, but with open sides (roof keeps off precipitation, but the open sides allow wind to travel over the manure and carry odours)
High	Liquid	Outside	H1	Liquid, outside, no cover, sloped-sided storage (earthen <i>manure storages</i> , but <u>not</u> earthen runoff storages associated with a solid <i>manure storage</i> which are L1 above)

Table 6: MDS I/II Separation Distances for Permanent Manure or Material Storage Types in Table 5

In using Table 6 to determine a value for S' – Storage Separation Distance, in some instances it may be necessary to interpolate a value.

For example, you determine the value for Encroachment Base Distance 'F' to be 106 metres. From Table 5, you have determined that the *livestock facility* uses a storage facility with an odour potential that is considered medium (M1).

Table 6 provides a value for Storage Separation Distance 'S' for an M1 Storage for an Encroachment Base Distance 'F' of 100 metres and for an Encroachment Base Distance 'F' of 110 metres, but not for an Encroachment Base Distance 'F' of 106 metres. The value of Storage Separation Distance 'S' for an M1 Storage with an Encroachment Base Distance 'F' of 100 metres, is 190 metres. The value of Storage Separation Distance 'S' for an M1 Storage with an Encroachment Base Distance 'F' of 100 metres, is 190 metres, is 199 metres. To determine the value of Storage Separation Distance 'S' for an M1 Storage Separation Distance 'S' for an M1 Storage, with an Encroachment Base Distance 'F' of 106 metres and Encroachment Base Distance 'F' of 106 metres. The value of Storage Separation Distance 'S' for an M1 Storage, with an Encroachment Base Distance 'F' of 106 metres. The value of Storage Separation Distance 'S' for an M1 Storage, with an Encroachment Base Distance 'F' of 106 metres. The value of Storage Separation Distance 'S' for an M1 Storage, with an Encroachment Base Distance 'F' of 106 metres. The value of Storage Separation Distance 'S' for an M1 Storage, with an Encroachment Base Distance 'F' of 106 metres interpolate between the numbers 190 and 199. In this example, the value of Storage Separation Distance 'S' for an M1 Storage, with an Encroachment Base Distance 'F' of 106 metres is 195.4 metres. This value should be rounded to the nearest whole number, in this case 195 metres.

When interpolating a value for Storage Separation Distance 'S' do not include any decimal places. Interpolated values with decimal places should be rounded accordingly. For example, if an interpolated value for Storage Separation Distance 'S' is calculated as 202.83 metres, then use a value of 203 metres for Storage Separation Distance 'S'.

In all instances, where Encroachment or Building Base Distance 'F' exceeds 1000 metres, then Storage Separation Distance 'S' will be the same value as 'F'.

Storage Base Di	Storage Separation Distances Based on Relative Odour Potential - Storage Base Distance, 'S' (m)				
Very Low Odour Storages V1 to V7	Low Odour Storages L1 to L2	Medium Odour Storages M1 to M2	High Odour Storages H1		
40	64	136	232		
50	74	145	240		
60	84	154	248		
70	93	163	256		
80	103	172	264		
90	113	181	272		
100	123	190	280		
110	132	199	288		
120	142	208	296		
130	152	217	304		
140	162	226	312		
150	171	235	320		
160	181	244	328		
170	191	253	336		
180	201	262	344		
190	210	271	352		
200	220	280	360		
210	230	289	368		
220	240	298	376		
230	249	307	384		
240	259	316	392		
250	269	325	400		
260	279	334	408		
270	288	343	416		
280	298	352	424		
290	308	361	432		
300	318	370	440		
310	327	379	448		
320	337	388	456		
330	347	397	464		
340	357	406	472		
350	366	415	480		
360	376	424	488		
370	386	433	496		
380	396	442	504		
390	405	451	512		
400	415	460	520		
420	435	478	536		
440	454	496	552		
460	474	514	568		
480	493	532	584		
500	513	550	600		
600	610	640	680		
800	805	820	840		
	000				
	Storage Base Di Very Low Odour Storages V1 to V7 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 420 440 460 480 500 600	Storage Base Distance, 'S' (m) Very Low Odour Storages V1 to V7 Low Odour Storages L1 to L2 40 64 50 74 60 84 70 93 80 103 90 113 100 123 110 132 120 142 130 152 140 162 150 171 160 181 170 191 180 201 190 210 200 220 210 230 220 240 230 249 240 259 250 269 260 279 270 288 280 298 290 308 300 318 310 327 320 337 330 347 340 3	Storage Base Distance, 'S' (m) Very Low Odour Storages V1 to V7 Low Odour Storages L1 to L2 Medium Odour Storages M1 to M2 40 64 136 50 74 145 60 84 154 70 93 163 80 103 172 90 113 181 100 123 190 110 132 199 120 142 208 130 152 217 140 162 226 150 171 235 180 201 262 190 210 271 200 220 280 210 230 289 220 240 298 230 249 307 240 259 316 250 269 325 260 279 334 270 288 343		

Table 6: MDS I/II Separation Distances for Permanent Manure