

REPORT

Preliminary Hydrogeological Assessment

Proposed Residential Subdivision, Bradford Highlands Golf Course, 23 Brownlee Drive, Bradford, Ontario L3Z 2A4

Submitted to:

Bradford Highlands Joint Venture

111 Creditstone Road, Concord, Ontario L4K 1N3

Attention: Neil Palmer

Submitted by:

WSP Canda Inc.

Distribution List

E-copy - Bradford Highlands Joint Venture

E-copy - WSP Canada Inc.

i

Table of Contents

1.0	INTRO	DDUCTION
	1.1	Scope of Work
2.0	STUD	Y AREA CHARACTERIZATION
	2.1	Topography and Drainage
	2.2	Physiography and Geology
	2.3	Groundwater Use
	2.4	Previous Investigations
	2.4.1	Monitoring Well Installation
	2.4.2	Groundwater Level Monitoring
	2.4.3	Hydraulic Conductivity Testing
	2.4.4	Surface Water Feature Assessment
	2.4.5	Water Balance Assessment
3.0	2022 I	FIELD INVESTIGATION
	3.1	Drilling and Well Installations
	3.2	Groundwater Level Measurements
	3.3	Hydraulic Conductivity
	3.4	Groundwater Quality
4 0	DFW	ATERING EVALUATION

APPENDED TABLES

Table A: Groundwater Levels

Table B: Piezometer Water Level Measurements

APPENDICES

APPENDIX A

Important Information and Limitations of This Report

APPENDIX B

Figures

APPENDIX C

MECP Water Well Database Search Results

APPENDIX D

Borehole Logs and Well Completion Details

APPENDIX E

Single Well Response Testing Results

APPENDIX F

Groundwater Hydrographs

APPENDIX G

Laboratory Analytical Results

1.0 INTRODUCTION

WSP Canada Inc ("WSP"), formerly Golder Associates Ltd. (Golder), was retained by Bradford Highlands Joint Venture. (the 'Client') to provide geotechnical and hydrogeological consulting services in support of the design for the proposed residential development (the 'Project') to be located at 23 Brownlee Drive, Bradford, Ontario (the 'Site'; Figure 1). The terms of reference for the consulting services are included in Golder's proposal No. CX22517668, dated February 9, 2022. Authorization to proceed with the investigation was provided in the form of the signed proposal received from the Client on February 16, 2022.

This report provides the results of the hydrogeological assessment and should be read in conjunction with the "Important Information and Limitations of This Report" in Appendix A which forms an integral part of this document. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location, or elevation, or if the project is not initiated within eighteen months of the date of the report, WSP should be given an opportunity to confirm that the recommendations in this report are still valid.

1.1 Scope of Work

The scope of work for the current hydrogeological investigation consisted of:

- Reviewing published information sources and data collected at the Site;
- Drilling and installation of monitoring wells;
- Collecting groundwater level measurements from the monitoring wells;
- Conducting hydraulic conductivity measurements at selected monitoring wells;
- Conducting groundwater quality sampling;
- Estimating short-term dewatering requirements;
- Update the previously completed water budget assessment completed previously by Golder in accordance with LSRCA guidelines; and
- Preparing a hydrogeological report compiling the results of both the 2018 investigation and current investigation.

2.0 STUDY AREA CHARACTERIZATION

The Site extends from Line 6 in the north to Line 5 in the south, and from Brownlee Drive in the west to Inverness Way in the East, in Bradford, Ontario (Figure 2, Appendix B). Based on the information provided by the Client, the proposed development will consist of a total of 946 residential units consisting of single detached units, semidetached units and townhouses. In addition, two stormwater management ponds are proposed to be constructed. At the time of this proposal preparation only preliminary plans were available for the proposed development.

2.1 Topography and Drainage

Based on publicly available topographic and drainage data, the ground surface at the Site slopes north to south, towards the Holland River with a geodetic elevation between approximately 251 metres above sea level (masl) and 219 masl. The closest surface water feature to the Site is the Holland River, bordering the site to the south. It is expected that surface water runoff at the Site would discharge to the Holland River.

2.2 Physiography and Geology

Physiographic mapping in the area (Chapman and Putnam, 2007) indicates that the Site lies within the physiographic region of southern Ontario known as the Schomberg Clay Plains. The Schomberg Clay Plains are composed of number of topographic basins located near Schomberg, Newmarket, and north of Lake Scugog. The overburden immediately below ground surface within the Schomberg Clay Plains generally consists of clay deposits underlain by a drumlinzed till plain. Surficial mapping provided by the Ontario Geological Survey (OGS) indicates that the surficial geology at the Site consists of stone-poor, sandy silt to silty sand textured till. Bedrock at the Site consists of limestone of the Lindsay Formation.

2.3 Groundwater Use

Based on the long-standing development of the area it is expected that all properties in the vicinity of the Site are connected to the municipal water supply system, and no active private groundwater supply wells are present. A review was conducted of the Ministry of the Environment, Conservation and Parks (MECP) water well database for the vicinity of the Site (Figure 3; Appendix B). The MECP database indicates records for 104 water wells located within approximately 200 m of the Site. The results of the MECP database search are provided in Appendix C.

A total of 88 of the records are listed for use as domestic water supply, with the majority of the wells are indicated to be completed between 20 to 45 mbgs. Five of the wells are indicated to be completed at depths shallower than 20 m. Two well records are indicated to be for municipal supply purposes, however based on a review of the MECP Source Protection Information Atlas (https://www.ontario.ca/page/source-protection), there are no active municipal groundwater supply wells in the vicinity of the Site. Based on the MECP information it is assumed the designated wells, which were installed in 1962 and 1970, are no longer operational. The remaining well records are listed as abandonment records, unused boreholes, as observation wells, or have no listed completion details.

2.4 Previous Investigations

A hydrogeological assessment of the Site was completed at the Site in 2019, which was documented in the report 'Bradford Highlands Golf Course Redevelopment, Bradford, Ontario', prepared for Diagram Developments Caledon Inc., date March 2018 (Golder, 2018). The following activities were completed as part of the 2018 hydrogeological investigation.

2.4.1 Monitoring Well Installation

Ten groundwater monitoring wells (BH2, BH3, BH4, BH5, BH8, BH9, BH11, BH14, BH16, and BH18) were installed across the Site as part of the concurrent geotechnical investigation. The monitoring wells were completed (i.e., screened) at depths between 4.3 to 6.9 m below ground surface (bgs). The location of the historical monitoring wells is presented on Figure 2 (Appendix B). Boreholes logs from the 2018 investigation are provided in Appendix D.

2.4.2 Groundwater Level Monitoring

Groundwater level measurements were collected at the 2018 wells using a manual, electric water level tape during six monitoring events spread over 2016 and 2017. The manual groundwater level readings are provided in Table A (attached).

2.4.3 Hydraulic Conductivity Testing

Single well response testing (i.e., rising head tests) were carried out at BH5, BH8, BH14, BH16, and BH18 in 2018. The testing was carried out by rapidly purging a known volume of water from each well with a dedicated disposable bailer and monitoring the subsequent water level recovery. The results of the 2018 single well response testing are provided in Appendix E, and summarized in Table A (attached).

2.4.4 Surface Water Feature Assessment

Nine shallow piezometers (designated MP-01 through MP-09) were installed in April 2017 adjacent to existing drainage features at the Site (Figure 2; Appendix B). Each piezometer consisted of a short, stainless steel screen, attached to piece of iron black pipe, which was driven into the shallow overburden using a manual hammer. Groundwater level measurements were subsequently collected at each of the piezometers. Water level readings were collected in the spring (April) early summer (May) and early fall (October), and are provided in Table B.

The result of the drainage feature assessment program indicated that recharging groundwater conditions occur at nearly all monitored locations, and throughout the year. The drainage features were found to be dry over much of the year, and groundwater discharge was only at features on the north portion of the Site (MP-02, MP-03, and MP-04) and only during the spring monitoring event.

Piezometers MP-01 through MP-04 were abandoned in June 2017 following confirmation from the LSRCA that the three northern tributaries to the Site are considered ephemeral features and do not meet the definition of a "key natural feature".

2.4.5 Water Balance Assessment

A preliminary water balance was completed, based on the available Site development plans, information gathered from the drilling investigation, and climate and water surplus data obtained from Environment Canada. The pre-development annual runoff from the Site was estimated as approximately 87,710 m³, and the estimated annual infiltration was approximately 57,060 m³. Post-development, the annual estimated runoff was approximately 2566,140 m³, and the annual estimated infiltration was 22,560 m³. The impact of proposed LID features was estimated as well, and it was found that infiltration would increase approximately 6,925 m³, or 12%. An update was conducted to the 2018 water balance assessment, and has been provided under separate cover (Golder, 2022).

3.0 2022 FIELD INVESTIGATION

3.1 Drilling and Well Installations

The current combined geotechnical and hydrogeological drilling program was carried out from March 14 to 16, 2022, during which time 18 boreholes (designated as BH22-1 to BH22-18) were advanced across the Site. The boreholes were advanced to depths ranging from 6.2 to 11.1 mbgs. The boreholes were advanced using a Geoprobe track mounted rig supplied and operated by Drill Tech Drilling & Shoring Inc. of Newmarket, Ontario, subcontracted to WSP. The approximate borehole locations are shown on Figure 2 (Borehole Location Plan; Appendix B). The results of the drilling program are presented on the Record of Borehole sheets in Appendix D.

Four boreholes were completed as 50-millimetre (mm) diameter monitoring wells, consisting of a PVC riser pipe, with a slotted screen sealed at a selected depth within the borehole. The annular borehole space around each screened interval was backfilled with silica sand, to a height of approximately 0.3 m above the top of the screen. The remaining annular space was backfilled to ground surface with bentonite chips. The well installation details are presented on the Record of Borehole sheets (Appendix D). The depths of the wells ranged from about 9.2 to 10.7 mbgs.

The results of the drilling program indicated that overburden deposits at the Site generally consisted of topsoil overlying native deposits of silty clay and silty clay to clayey silt till. A unit of sand and silty sand was identified at various boreholes across the Site, generally underlying the silty clay and silty clay till. Figure 4A and Figure 4B (Appendix B) provide geological cross-sections across the Site. Bedrock was not encountered at any of the borehole locations.

3.2 Groundwater Level Measurements

A groundwater level monitoring program was implemented as part of the current investigation, starting in April 2022. The program consisted of collecting quarterly manual groundwater level readings at each of the monitoring wells at the Site, and installation of pressure transducers at four of the monitoring wells (BH2, BH11, BH22-3, and BH22-09) to collect continuous water level readings. Manual water levels were measured at each location with an electric water level tape, which was cleaned between well locations. Table A attached, provides all available manual water level measurements collected to date at the Site. The groundwater hydrographs from the data logger measurements to date are presented in Appendix F.

The depth to groundwater at the Site was found to range from above grade (i.e., artesian) to approximately 4.51 mbgs, where the ground surface is defined as the existing grade. The water table across the Site was found to be situated within the silty clay unit, at elevations ranging from about 219.4 to 247.5 masl. Groundwater level monitoring over 2022 / 2023 (Appendix F) indicates that the groundwater level at the Site was highest during the spring (i.e., March, April, May) with water levels then declining over the summer months. At monitoring wells BH2, BH11 and BH22-3 the groundwater level was within about 0.2 m of ground surface during the spring period. The pattern of groundwater level fluctuations at well BH22-03 differed somewhat from the other wells. It is surmised that the water level readings before August 2022 are anomalously low due to an incomplete hydrostatic seal at the wellhead. Readings after August 2022 show a pattern of fluctuation consistent with the other wells, with the highest water levels noted during the spring months, and levels then declining in the summer of 2023. The range of fluctuations in the groundwater table over the year was 2.5 to 3 m. For well BH22-09, which is under confined conditions, water levels fluctuated by about 1 m.

Figure 5 (Appendix B) shows the inferred groundwater flow direction at the Site, which essentially mimics the topographic slope. Artesian conditions were noted at monitoring well BH16 in 2018, and at monitoring well BH22-03 during the current investigation. Well BH16 was screened within the silty clay and well BH22-03, although screened in the silty clay, contacted the underlying sand at the bottom of the screen. It is expected that the artesian conditions are associated with confined (i.e., pressurized) conditions in the deeper sand / silty sand unit.

3.3 Hydraulic Conductivity

Single-well response testing was carried in April 2022 as part of the current investigation. The testing was carried out by rapidly purging a known volume of water from each well with a dedicated inertial (i.e., Waterra) pump and monitoring the subsequent water level recovery with manual electric water level tape.

The data was analyzed using the AQTESOLV for Windows version 4.50 Professional software. The Bouwer-Rice (1976) method for unconfined conditions was used to analyse the single well response testing data. Testing was also completed as part of the 2018 investigation. The single-well response testing results from both investigations are provided in Appendix E.

The tested wells were screened within the silty clay (BH5, BH14 and BH16), sandy clay till (BH8 and BH18), and clayey silt till (BH22-05 and BH22-09). The hydraulic conductivity was measured to be between 2 x 10^{-6} m/s and 3 x 10^{-8} m/s in the silty clay, 9 x 10^{-8} m/s in the sandy clay till, and 2 x 10^{-7} m/s and 4 x 10^{-8} m/s in the clayey silt till. Geometric mean hydraulic conductivity value based on all the testing results was found to be 1 x 10^{-7} m/s.

3.4 Groundwater Quality

Groundwater quality samples were collected at monitoring well BH22-3 using low-flow sampling techniques, according to standard environmental practices. The samples were stored on ice following collection, and were delivered to Caduceon Laboratories of Barrie, Ontario for analysis of a subset of the Provincial Water Quality Objectives (PWQO). The laboratory analytical data sheets are provided in Appendix G.

The analytical results indicate that the concentrations of the analyzed parameters were below their respective PWQO values, with the exception of total phosphorous [130 ug/L], total cobalt [1 ug/L], total iron [2310 ug/L], and total aluminium [1620 ug/L], each of which were reported at concentrations in excess of the PWQO in the unfiltered sample. The concentration of total suspended solids (TSS) was 206 mg/L. Elevated TSS concentrations are common for groundwater samples collected from relatively new monitoring wells completed in fine grained material, and the presence of elevated phosphorous, iron, cobalt, and aluminium concentrations is assumed to be a consequence of the relatively high TSS concentration.

In order to assess the impact of TSS on the sample, and to provide an indication of water quality following TSS removal (i.e., as part of a construction dewatering setup), an additional filtered sample was collected and submitted for the analysis of metals and total phosphorus. The analytical results from the filtered sample showed that the metals exceedances noted in the filtered sample were no longer present. The phosphorous concentration in the filtered sample was 20 ug/L, which is significantly lower than was noted in the unfiltered sample.

Prior to commencing any temporary construction dewatering activities, the suitability of the water for discharge will need to be confirmed by the contractor. It is recommended that samples be collected from the treatment system and submitted for laboratory analysis prior to commencing the full construction activities. The laboratory results should be provided to a Qualified Professional in order to confirm the discharge water is suitable for release under the applicable guidelines.

4.0 DEWATERING EVALUATION

At the time of reporting, no information was available regarding planned excavation depths required for construction. As such, WSP is currently unable to provide detailed comment on the water taking requirements, or potential concerns related to dewatering, at the Site. Based on the single well response testing results, it is expected the groundwater yield from the various clay-rich units (i.e., silty clay, clayey silt till, sandy clay) will be relatively limited. The occurrence of artesian conditions in the central portion of the Site indicates that the deeper sand unit (or units) exist under confined (i.e., pressurized) conditions. The possibility of artesian flow, or hydrostatic uplift associated with construction activities, should be considered a possibility and depressurization may be required to permit construction to proceed. When development plans have been finalized, this information should be provided to WSP to complete the dewatering evaluation.

Signature Page

We trust that this report is sufficient to meet your current requirements. Should any point require additional clarification or should any questions arise, please do not hesitate to contact the undersigned.

Yours truly,

WSP Canada Inc.

Patrick Merritt, E.I.T., M.E.Sc. Graduate Environmental Engineer

Patrick Merritt

David Dillon, M.Sc, P.Geo. Senior Hydrogeologist

PM/DD/rk

 $https://golderassociates.sharepoint.com/sites/159365/project files/6 deliverables/hydrog/final/22517668 \,rep \, 2023'09'05 \, bradford \, highlands \, rev0.docx files/6 deliverables/hydrog/final/22517668 \,rep \, 2023'09'05 \, bradford \, highlands \, rev0.docx files/6 deliverables/hydrog/final/22517668 \,rep \, 2023'09'05 \, bradford \, highlands \, rev0.docx files/fil$

REFERENCES

Golder Associates Ltd. 2018. Hydrogeological Investigation, Bradford Highlands Golf Course Redevelopment, Bradford, Ontario. Report prepared for Digram Developments Caledon Inc. Dated March 2018.

WSP Golder. 2022. Draft Water Balance Assessment, Bradford Highlands Golf Course Redevelopment. Report prepared for Digram Developments Caledon Inc. Dated October 2022.

TABLES

Tables A and B

Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Measuring Point (masl)	Stick up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
BH22-03	10.67	231.5	231.46	-0.04	26-Apr-22	Artesian	-	-	-	CLAYEY SILT TILL
					31-May-22	Artesian	-	-		
					18-Aug-22	Artesian	-	-		
					18-Nov'22	Artesian	-	-		
					14-Aug-23	Artesian	-	-		
BH22-05	9.10	224.0	223.91	-0.06	26-Apr-22	0.17	0.23	223.74	4E-08	CLAYEY SILT TILL
					31-May-22	0.29	0.35	223.62		
					18-Aug-22	0.91	0.97	223.00		
					18-Nov-22	0.76	0.82	223.16		
					14-Aug-23	0.43	0.49	223.48		
BH22-06	10.70	220.7	220.64	-0.04	26-Apr-22	0.33	0.37	220.31	-	SANDY CLAYEY SILT TILL
					31-May-22	0.49	0.53	220.15		
					18-Aug-22	1.24	1.28	219.41		
					18-Nov-22	0.79	0.83	219.85		
					14-Aug-23	0.26	0.30	220.39		
BH22-09	10.70	231.6	231.52	-0.07	26-Apr-22	0.84	0.91	230.68	2E-07	CLAYEY SILT TILL
					31-May-22	1.28	1.35	230.24		
					18-Aug-22	1.99	2.05	229.54		
					18-Nov-22	2.47	2.54	229.05		
					14-Aug-23	1.16	1.52	230.37		
BH2	5.20	245.7	245.5	-0.16	23-Mar-16	0.75	0.91	244.75	-	SILTY CLAY
					28-Mar-16	0.01	0.17	245.49		
					21-Oct-16	3.60	3.76	241.90		
					8-Dec-16	3.40	3.56	242.10		
					5-Apr-17	0.58	0.74	244.92		
					26-Apr-22	1.45	1.61	244.05		
					31-May-22	2.05	2.21	243.45		
					18-Aug-22	3.31	3.47	242.19		
					18-Nov-22	3.32	3.48	242.18		
					14-Aug-23	2.16	2.32	243.34		

Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Measuring Point (masl)	Stick up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
ВН3	5.20	245.4	245.3	-0.09	22-Mar-16	0.77	0.86	244.50	-	SILTY CLAY
					28-Mar-16	0.13	0.22	245.14		
					12-Sep-16	3.31	3.40	241.96		
					21-Oct-16	3.62	3.71	241.65		
					8-Dec-16	3.43	3.52	241.84		
					24-Feb-17	1.55	1.64	243.72		
					26-Apr-22	Buried	-	-		
					31-May-22	Buried	-	-		
					18-Aug-22	3.23	3.32	242.05		
					18-Nov-22	3.36	3.45	241.92		
					14-Aug-23	2.17	2.26	243.11		
BH4	5.20	245.2	245.1	-0.15	22-Mar-16	1.05	1.20	244.01		SILTY CLAY
					28-Mar-16	0.26	0.41	244.80		
					21-Oct-16	3.84	3.99	241.22		
					24-Feb-17	1.88	2.03	243.18		
					18-Apr-17	0.59	0.74	244.47		
					26-Apr-22	Buried	-	-		
					31-May-22	Buried	-	-		
					18-Aug-22	Buried	-	-		
					18-Nov-22	Buried	-	-		
					14-Aug-23	Buried	-	-		
DUC	0.40	040.0	040.4	0.00	40.0 40	2.00	2.00	045.00	05.00	OII TV OI AV
BH5	6.10	248.2	248.1	-0.09	12-Sep-16	2.99	3.08	245.08	2E-06	SILTY CLAY
					8-Dec-16	3.22	3.31	244.85		
					5-Apr-17	0.59	0.68	247.48		
					26-Apr-22	Buried	-	-		
					31-May-22	Buried	-	-		
					18-Aug-22	Buried	-	-		
					18-Nov-22	3.36	3.45	244.72		
					14-Aug-23	1.16	1.25	246.91		
BH8	4.30	236.9	236.9	-0.05	23-Mar-16	0.69	0.74	236.19	9E-08	sandy CLAY
					28-Mar-16	0.34	0.39	236.54		

Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Measuring Point (masl)	Stick up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
					21-Oct-16	1.51	1.56	235.37		
					8-Dec-16	1.67	1.72	235.21		
					5-Apr-17	0.45	0.50	236.43		
					26-Apr-22	Buried	-	-		
					31-May-22	Buried	-	-		
					18-Aug-22	1.60	1.65	235.29		
					18-Nov-22	1.43	1.48	235.45		
					14-Aug-23	-	-	-		
BH9	5.8	236.2	236.20	-0.04	23-Mar-16	0.70	0.74	235.50	_	SILTY CLAY
					28-Mar-16	0.30	0.34	235.90		
					12-Sep-16	1.54	1.58	234.66		
					5-Apr-17	0.72	0.76	235.48		
					26-Apr-22	Buried	-	-		
					31-May-22	Buried	-	-		
					18-Aug-22	Buried	-	-		
					18-Nov-22	Buried	-	-		
					14-Aug-23	Buried	-	-		
BH11	6.9	233.2	233.05	-0.13	23-Sep-16	3.25	3.38	229.80	_	SILTY CLAY
					8-Dec-16	4.38	4.51	228.67		<u> </u>
					5-Apr-17	0.11	0.24	232.94		
					26-Apr-22	0.70	0.83	232.35		
					31-May-22	1.59	1.72	231.46		
					18-Aug-22	2.84	2.97	230.21		
					18-Nov-22	2.89	3.02	230.16		
					14-Aug-23	1.68	1.81	231.38		
BH14	6.1	220.3	220.48	-0.16	12-Sep-16	0.67	0.83	219.81	3E-08	SILTY CLAY
				-	8-Dec-16	0.24	0.40	220.24		<u> </u>
					5-Apr-17	0.05	0.21	220.43		
					26-Apr-22	0.12	0.28	220.36		
					31-May-22	0.25	0.41	220.23		
					18-Aug-22	0.29	0.45	220.19		

WSP Canada Inc Page 3 of 4

Well ID	Borehole Depth (mbgs)	Ground Surface (masl)	Measuring Point (masl)	Stick up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Hydraulic Conductivity (m/s)	Primary Unit
					18-Nov-22	0.28	0.44	220.20		
					14-Aug-23	0.28	0.44	220.20		
BH16	6.10	231.7	231.5	-0.12	12-Sep-16	2.82	2.94	228.72	1E-07	CLAYEY SILT to SILTY CLAY
					8-Dec-16	4.02	4.14	227.52		
					5-Apr-17	Artesian	-	-		
					26-Apr-22	Buried	-	-		
					31-May-22	Buried	-	-		
					18-Aug-22	Buried	-	-		
					18-Nov-22	4.41	4.53	227.13		
					14-Aug-23	0.89	1.01	230.65		
D1140	0.00	207.0	200.0	0.4	40.0 40	4.70	4.00	005.40	25.00	1.01.07
BH18	3.80	237.0	236.9	-0.1	12-Sep-16	1.73	1.83	235.12	9E-08	sandy CLAY
					8-Dec-16	1.26	1.36	235.59		
					5-Apr-17	0.04	0.14	236.81		
					26-Apr-22	0.37	0.47	236.49		
					31-May-22	0.87	0.97	235.98		
					18-Aug-22	1.44	1.54	235.41		
					18-Nov-22	1.09	1.19	235.77		
					14-Aug-23	0.44	0.54	236.42		

Notes:

- 1. m toc meters below top of casing
- 2. masl meters above sea level
- 3. m bgs meters below ground surface
- 4. Table to be read in conjunction with accompanying report
- 5. Superscript ¹ denotes approximate stickups

WSP Canada Inc Page 4 of 4

Table B Piezometer Water Level Measurements

Well ID	Stick-Up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Surface Water Depth (mbtoc)	Comments
MP-01	0.41	12-Apr-17	0.848	0.44		
		12-Apr-17	0.824	0.41		
		12-May-17	0.539	0.13	0.31	recharging
MP-02	0.36	12-Apr-17	0.624	0.26		
		12-Apr-17	0.068	-0.29		
		12-May-17	0.178	-0.18	0.33	discharging
MP-03	0.35	12-Apr-17	0.768	0.42		
		12-Apr-17	0.768	0.42		
		12-May-17	0.344	-0.01	0.36	discharging
MP-04	0.52	12-Apr-17	1.138	0.62		
		12-Apr-17	1.105	0.59		
		12-May-17	0.388	-0.13	0.43	discharging
MP-05	0.64	12-Apr-17	0.633	-0.01		
		12-Apr-17	0.631	-0.01		
		12-May-17	0.753	0.11	dry	recharging
		2-Oct-17	1.055	0.42	dry	recharging
MP-06	0.54	12-Apr-17	0.921	0.38		
		12-Apr-17	0.734	0.19		
		12-May-17	0.521	-0.02	0.53	discharging
		2-Oct-17	1.14	0.60	dry	recharging
MP-07	0.41	12-Apr-17	0.935	0.53		
		12-Apr-17	0.92	0.51		
		12-May-17	0.565	0.16	0.41	recharging
		2-Oct-17	1.085	0.68	dry	recharging
MP-08	0.57	12-Apr-17	1.045	0.48		
		12-Apr-17	1.035	0.47		
		12-May-17	0.571	0.00	0.57	
		2-Oct-17	0.59	0.02	dry	recharging

Piezometer Water Level Measurements

Well ID	Stick-Up (m)	Measurement Date	Water Level (mbtoc)	Water Level (mbgs)	Surface Water Depth (mbtoc)	Comments
MP-09	0.51	12-Apr-17	0.618	0.11		
		12-Apr-17	0.779	0.27		
		12-May-17	0.509	0.00	0.59	
		2-Oct-17	0.53	0.02	dry	recharging

Notes:

- 1. m toc meters below top of casing
- 2. mbgs meters below ground surface
- 3. negative values denote water levels above ground surface
- 4. Initial April 12 reading immediately post installation. Second reading approximately 1 hour post installation.
- 5. Table to be read in conjunction with accompanying report

APPENDIX A

Important Information and Limitations of This Report

Study Limitations

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

September 2023

Project No: 22517668

Standard of Care: WSP Canada Inc. (WSP) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to WSP by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. WSP can not be responsible for use of this report, or portions thereof, unless WSP is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without WSP's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, WSP may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to WSP. The report, all plans, data, drawings and other documents as well as all electronic media prepared by WSP are considered its professional work product and shall remain the copyright property of WSP, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of WSP. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of WSP's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to WSP by the Client, communications between WSP and the Client, and to any other reports prepared by WSP for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. WSP can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, WSP does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that WSP interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on

September 2023

Project No: 22517668

adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: WSP will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of WSP's report. WSP should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of WSP's report.

During construction, WSP should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of WSP's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in WSP's report. Adequate field review, observation and testing during construction are necessary for WSP to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, WSP's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that WSP be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that WSP be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. WSP takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

Figures

25 mm

APPENDIX C

MECP Water Well Database Search Results

LABEL		DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME		DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min		METHOD	STAT	DESCRIPTION OF MATERIALS
5191	4	Feb-61	613758	223.7	18.9 Fr	24.1 -2.4	FLW	877	720	2.1	4823	TH	MOE# 5705191
	13		4882250			21.6 -2.4					CT	NU	0.0 TPSL 0.3 YLLW CLAY 2.4 HPAN GRVL CLAY
													18.9 GRVL SAND 26.5
5192	4	Mar-62	613789	223.4	20.4 Fr	24.1 -2.1	-0.3	1864	2880	14.3	4610	WS	MOE# 5705192 TAG#ASSMNT
	13		4882290			21.6 -2.4					CT	MU	0.0 TPSL 0.3 BRWN SAND 0.9 BRWN SAND CLAY
													1.5 CLAY BLDR FSND 7.6 GRVL SAND 8.5 BLUE
													CLAY GRVL 9.1 BRWN SAND CLAY 20.4 FSND 23.5
													SAND GRVL 26.2
5197	4	Jan-66	614154	220.1	32.3 Fr		0.6	91	240	5.5	3414	WS	MOE# 5705197
	14		4882331								CT	ST	0.0 PEAT 1.5 SILT 19.2 CLAY BLDR 31.7 GRVL
													32.3
5252		Apr-65	614179	232.0	11.6 Fr		8.5	5			3109	WS	MOE# 5705252
			4884014								BR	ST	0.0 TPSL 0.3 CLAY 7.3 BLUE CLAY STNS 11.6
													MSND 11.9 BLUE CLAY STNS 15.2
5254	6	Dec-65	613288	260.0	15.8 Fr		6.7	9			3109	WS	MOE# 5705254
	12		4883701								BR	ST	0.0 TPSL 0.6 CLAY 14.6 CLAY MSND STNS 22.3
7323	5	May-70	613662	250.9	7.3 Fr		1.2				3109	WS	MOE# 5707323
	13	.,	4883681								BR	DO	0.0 TPSL 0.6 BRWN CLAY 7.3 GRVL 7.9
7609	4	Sep-70	613712	226.8	20.7 Fr	22.3 -4.3	1.5	1918	60	17.7	1621	WS	MOE# 5707609
	13		4882291								CT	MU	0.0 TPSL 0.3 CLAY MSND GRVL 20.7 FSND CSND
													GRVL 26.2 CLAY 27.1
8894	5	May-72	613740	226.8	3.0 Fr		2.4				4102	WS	MOE# 5708894
	13	•	4882422								BR	DO	0.0 TPSL 0.6 BRWN CLAY 8.2 BLUE CLAY STNS
													12.8
9028	4	Aug-72	614282	220.1	32.6 Fr	31.7 -0.9	1.8	23	4320	8.5	3414	WS	MOE# 5709028
	14	J	4882421								CT	DO	0.0 CLAY 6.4 CLAY GRVL 31.7 SAND GRVL CLAY
													32.6
9445	5	Oct-72	613302	258.8	20.7 Fr		7.3				3109	WS	MOE# 5709445
	12		4883571								BR	DO	0.0 TPSL 0.6 BRWN CLAY SAND 9.8 BLUE CLAY
													STNS 20.7 GRVL 21.6
12974	4	Nov-75	614412	220.1	71.6 -	73.8 -1.2	4.0	45		75.0	3903	WS	MOE# 5712974
	14		4882471								RC	DO	0.0 BLCK WDFR CLAY 3.0 GREY CLAY SAND LYRD
			.002.72										27.4 GREY CLAY STNS HARD 71.6 GREY SAND STNS
													LOOS 75.0
15872	4	Sep-78	614112	220.1	71.3 -	71.6 -1.2	2.4	36	180	51.8	3903	WS	MOE# 5715872
13072	13	3cp 70	4882371	220.1	71.5	71.0 1.2	2.4	30	100	31.0	CT	DO	0.0 BLCK WDFR 0.3 GREY CLAY 9.1 GREY CLAY
	13		4002371								Ci	ВО	SILT SOFT 29.0 GREY CLAY STNS HARD 62.5 GREY
													CLAY SILT SOFT 71.3 GREY FSND 72.8
16510	5	Oct-79	613712	2 <u>4</u> 9 9	9.1 -		5.5		30	9.1	4919	WS	MOE# 5716510
10010	13	00075	4883671	2-7.5	6.1 -		5.5		30	٧.1	BR	DO	0.0 BRWN TPSL HARD 0.3 BRWN CLAY CMTD 6.1
	13		4003071		0.1						DIX	ЪО	BRWN CLAY STNS SAND 10.7
20489	4	Apr-85	613562	235.9	15.2 -		15.2		30	18.9	4919	WS	MOE# 5720489
20403	13	∠hı-02	4882271	233.3	13.2 -		13.2		30	10.5	4919 BR	DO	0.0 BRWN TPSL HARD 0.3 BRWN CLAY HARD 6.1
	13		40022/1								וט	50	
													BRWN SAND LOOS 19.8

LABEL	LOT	DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min	mbgl	DRILLER METHOD	TYPE	WELL NAME DESCRIPTION OF MATERIALS
20513	5 14	Feb-86	614436 4882899	228.0	10.7 Fr	25.3 -0.9	12.8	36	60	18.3	1413 RR	WS DO	MOE# 5720513 0.0 BRWN SAND CLAY TPSL 0.3 BRWN CLAY SAND SILT 4.6 BRWN SAND CLAY SILT 4.9 BRWN CLAY SAND SILT 10.7 BRWN GRVL SAND LOOS 11.0 BRWN GRVL CLAY SAND 13.1 BRWN GRVL CLAY SAND 24.4 BRWN SAND SILT LOOS 26.2
21229	5 13	Oct-86	613496 4883560	253.9	121.9 Fr		38.1	18	60	121.9	3108 RC	WS DO	MOE# 5721229 0.0 BRWN CLAY 5.5 BRWN CLAY SNDY 10.1 SAND GRVL STNS 11.3 SAND CLAY STNS 15.8 BLUE CLAY SNDY 21.9 BLUE CLAY 41.8 BLUE CLAY SNDY 53.0 BLUE SAND CLAY 71.3 BLUE CLAY 118.9 BLUE CLAY SHLE 120.4 BRWN LMSN 122.5
21625	5 13	Apr-87	613508 4883614	253.9	58.5 Fr	60.0 -0.9	30.5	100	120	42.7	3108 RC	WS DO	MOE# 5721625 0.0 BRWN CLAY SNDY 8.5 BLUE CLAY SNDY 23.5 SAND 24.4 BLUE CLAY 49.4 SAND 50.0 BLUE CLAY 52.7 SAND 54.9 BLUE CLAY 58.5 CSND 61.0
21626	5 13	Apr-87	613479 4883525	253.0	59.4 Fr	61.3 -0.9	30.5	68	120	56.7	3108 RC	WS DO	MOE# 5721626 0.0 BRWN CLAY 3.0 STNS 3.7 BLUE CLAY 14.9 BLUE CLAY SNDY 48.2 SAND 48.8 BLUE CLAY SNDY 58.2 SAND 62.2
21627	5 13	Mar-87	613450 4883495	253.9	49.7 Fr	51.8 -1.8	30.5	91	90	53.3	3108 RC	WS DO	MOE# 5721627 0.0 SAND FILL 2.1 BRWN CLAY SNDY 5.5 BLUE CLAY 49.7 BLUE SAND 53.9
21642	5 13	Apr-87	613443 4883528	253.9	52.7 Fr	53.9 -0.9	30.5	91	120	53.3	3108 RC	WS DO	MOE# 5721642 0.0 BRWN CLAY STNS 8.5 BLUE CLAY SNDY STNS 37.2 BLUE CLAY 52.4 BLUE SAND 54.9
21715	5 13	Jun-87	613495 4883650	254.8	54.9 Fr	55.5 -0.9	30.8	91	120	55.8	3108 RC	WS DO	MOE# 5721715 0.0 BRWN CLAY GRVL STNS 14.6 BLUE CLAY SNDY GRVL 32.0 BLUE CLAY 46.6 BLUE CLAY SNDY 54.3 BLUE SAND 56.4
21909	5 13	Jul-87	613787 4883702	245.7	37.5 Fr	37.5 -0.9	23.5	23	120	36.6	3108 RC	WS CO	MOE# 5721909 0.0 BRWN CLAY 2.4 SAND GRVL STNS 10.4 BLUE SAND CLAY STNS 28.0 BLUE CLAY 36.6 BLUE SAND 38.4
21910	5 13	Jul-87	613815 4882923	232.9	27.4 Fr	28.7 -0.9	7.6	182	60	27.4	3108 RC	WS DO	MOE# 5721910 0.0 BRWN CLAY 3.7 BLUE CLAY SNDY 14.9 BLUE CLAY 27.4 BLUE SAND 29.6
21914	5 13	Jul-87	613537 4883124	246.9	36.6 Fr	37.5 -0.9	24.7	114	60	38.1	3108 RC	WS DO	MOE# 5721914 0.0 BRWN SAND CLAY 3.7 BLUE SAND CLAY STNS 26.8 BLUE SAND CLAY 36.6 BLUE SAND 38.4
21916	5 13	Jul-87	613524 4883187	249.9	36.0 Fr	36.6 -0.9	27.4	82	120	36.0	3108 RC	WS DO	MOE# 5721916 0.0 BRWN CLAY SNDY STNS 2.7 BLUE CLAY SNDY STNS 17.4 BLUE CLAY SNDY 21.6 BLUE CLAY 35.4 BLUE SAND 37.5

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD	TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
24047								•					
21917	5	Jul-87	613583	245.1	35.7 Fr	36.9 -0.9	23.8	45	120	36.6	3108	WS DO	MOE# 5721917
	13		4883146								RC	ЪО	0.0 BRWN CLAY SNDY 3.0 BLUE CLAY SNDY STNS 19.5 BLUE CLAY SNDY 28.3 BLUE CLAY 35.7 BLUE
													SAND 37.8
22332	5	Oct-87	613821	231.3	26.5 Fr	28.3 -0.9	9.8	182	60	27.4	3108	WS	MOE# 5722332
22332	13	Oct-67	4882876	231.3	20.5 FI	28.3 -0.9	5.0	102	00	27.4	RC	DO	0.0 BRWN CLAY 5.2 BLUE GRVL SNDY CLAY 9.8
	13		4002070								IC	ЪО	BLUE CLAY HARD 17.7 BLUE CLAY SNDY 26.5 BLCK
													SAND 29.3
22333	5	Oct-87	613799	230.4	29.0 Fr	29.9 -0.9	9.4	341	60	29.0	3108	WS	MOE# 5722333
	13		4882792		23.0	23.3 0.3	5. .	0.1			RC	DO	0.0 BLCK TPSL 0.6 BRWN CLAY 5.5 BLUE CLAY
													GVLY 23.5 BLUE CLAY SNDY SOFT 25.9 BLUE CLAY
													HARD 27.7 BLUE CLAY 29.0 BLCK SAND GRVL 30.8
22335	5	Oct-87	613797	234.4	28.7 Fr	29.6 -1.2	11.9	136	60		3108	WS	MOE# 5722335
	13		4882962								RC	DO	0.0 BRWN CLAY 5.2 BLUE SAND GRVL CLAY 14.0
													BLUE CLAY HARD 18.6 BLUE CLAY SNDY SOFT 28.7
													BLCK SAND 30.8
22337	5	Oct-87	613466	253.0	60.0 Fr	61.0 -0.9	30.5	227	120	54.9	3108	WS	MOE# 5722337
	13		4883468								RC	DO	0.0 BRWN CLAY SNDY STNS 5.5 BLUE CLAY STNS
													SNDY 20.7 BLUE CLAY 40.5 BLUE CLAY SNDY 54.3
													BLUE FSND CLAY LYRD 60.0 BLUE MSND 61.9
22338	5	Oct-87	613768	233.2	30.5 Fr	31.7 -0.9	12.2	136	90	30.5	3108	WS	MOE# 5722338
	13		4882878								RC	DO	0.0 BRWN CLAY 6.7 BLUE SAND CLAY STNS 13.1
													BLUE CLAY 23.5 BLUE CLAY SNDY 28.0 BLUE SAND
													32.6
22340	5	Oct-87	613545	250.2	38.1 Fr	39.9 -0.9	29.3	68	90	38.1	3108	WS	MOE# 5722340
	13		4883324								RC	DO	0.0 BRWN CLAY STNS 7.0 BLUE GRVL SNDY CLAY
													21.0 BLUE CLAY 32.6 BLUE CLAY SNDY 38.1 BLUE
22244		0 . 0=	640505	2525					100		2122		SAND 40.8
22341	5	Oct-87	613535	250.5	44.2 Fr	45.7 -0.9	28.7	114	120		3108	WS	MOE# 5722341
	13		4883388								RC	DO	0.0 BRWN CLAY STNS 5.8 BLUE GRVL SNDY CLAY
													19.8 BLUE CLAY 36.6 BLUE CLAY SNDY 40.8 BLUE
22242		O+ 07	(125)	250.2	26.0.5**	20.1 0.0	20.2	C 4	120		2100	\A/C	SAND CLAY LYRD 44.2 BLUE SAND 46.6
22342	5 13	Oct-87	613563 4883267	250.2	36.9 Fr	38.1 -0.9	28.3	64	120		3108 RC	WS DO	MOE# 5722342 0.0 BRWN CLAY SNDY STNS 8.2 BLUE CLAY SNDY
	13		4003207								NC.	ы	
22452	5	Oct-87	613681	235.9	30.5 Fr	31.7 -0.9	20.1	45	120	30.5	3108	WS	STNS 18.3 BLUE CLAY 36.9 SAND 39.0 MOE# 5722452
22432	13	OC1-07	4883052	233.3	JU.J FI	31.7 -0.3	20.1	43	120	30.3	RC	PU	0.0 BRWN SAND CLAY 4.9 BLUE SAND CLAY STNS
	13		7003032								I.C	10	13.4 BLUE CLAY 30.5 BLUE SAND 32.6
22453	5	Oct-87	613579	246.9	33.8 Fr	34.7 -0.9	25.9	45	120	32.6	3108	WS	MOE# 5722453
22433	13	00007	4883202	2-0.5	55.0 11	34.7 0.3	23.3	73	120	32.0	RC	DO	0.0 BRWN CLAY SNDY STNS 5.8 BLUE CLAY SNDY
	-5		1000202									20	STNS 21.9 BLUE CLAY 33.8 BLUE SAND 35.7
ļ													STING ZELO BEOL CENT 33.0 BEOL SAIND 33.7

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD	TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
22454					-								
22454	5	Oct-87	613599	243.2	32.0 Fr	39.0 -0.9	21.9	91	120	38.7	3108	WS	MOE# 5722454
	13		4883090								RC	DO	0.0 BRWN CLAY SNDY 3.7 BLUE CLAY SNDY STNS
													8.2 SAND GRVL 9.8 BLUE CLAY SNDY STNS 25.3
													BLUE CLAY 32.0 BLUE SAND 39.9
22611	5	Nov-87	613810	230.7	26.2 Fr	27.1 -0.9	10.1	227	60	25.9	3108	WS	MOE# 5722611
	13		4882826								RC	DO	0.0 BRWN CLAY 4.9 BLUE CLAY 7.6 BRWN CLAY
													SNDY 12.2 BLUE CLAY 26.2 BLUE SAND 28.0
22619	4	Nov-87	613958	220.1	37.5 Fr	36.3 -1.2	10.7	55	90	18.3	1413	WS	MOE# 5722619
	13		4882333								RC	DO	0.0 BRWN CLAY STNS 9.8 BRWN SAND LOOS 17.4
													BRWN SAND PCKD 25.0 BRWN SAND LOOS 34.4 BRWN
													SAND GRVL CLN 37.5
23710	5	Jul-88	613609	240.8	31.1 Fr	34.4 -0.9	20.7	91	180		3108	WS	MOE# 5723710
	13		4882980								RC	DO	0.0 BRWN CLAY 4.3 BRWN CLAY GRVL 6.1 BLUE
													CLAY GRVL 14.0 BLUE CLAY 21.3 BRWN CLAY 24.7
													BLUE CLAY 27.4 BLUE CLAY SAND 31.1 BLUE SAND
													35.4
23711	5	Aug-88	613736	230.1	32.6 Fr	32.9 -0.9	12.2	205	60	22.9	3108	WS	MOE# 5723711
	13		4882763								RC	DO	0.0 BRWN CLAY GRVL 7.3 BLUE CLAY 12.5 BLUE
													CLAY GRVL 22.9 BRWN CLAY GRVL 26.8 BLUE CLAY
													SAND GRVL 32.6 SAND GRVL 33.8
23713	5	Aug-88	613722	230.4	32.3 Fr	32.3 -0.9	11.9	341	120		3108	WS	MOE# 5723713
	13		4882727								RC	DO	0.0 BRWN CLAY GRVL 6.7 BRWN SAND 8.5 BLUE
													CLAY GRVL 26.8 BRWN CLAY 28.7 SAND 31.1 BLUE
													CLAY 32.3 GRVL 33.2
24026	5	Sep-88	613755	233.2	32.9 Fr	34.4 -0.9	12.8	273	60	21.3	3108	WS	MOE# 5724026
	13		4882841								RC	DO	0.0 BRWN CLAY 7.0 BLUE CLAY GRVL 9.8 BLUE
													CLAY 29.9 BLUE CLAY SAND 32.9 BLUE SAND 35.4
24027	5	Sep-88	613748	232.3	32.6 Fr	34.1 -0.9	12.2	341	60		3108	WS	MOE# 5724027
	13	•	4882797								RC	DO	0.0 BRWN CLAY GRVL 7.9 BLUE CLAY GRVL 23.2
													BLUE CLAY 32.0 BLUE CLAY SAND 32.6 BLUE SAND
													35.1
24224	5	Oct-88	613829	243.2	37.2 Fr	38.4 -0.9	10.7	68	60	38.1	3108	WS	MOE# 5724224
	13		4883728			-	- "-				RC	DO	0.0 BRWN CLAY 1.2 BRWN SAND 18.3 BRWN CLAY
													SAND LYRD 22.9 BLUE CLAY 31.4 BLUE SILT CLAY
													32.0 BLUE CLAY 37.2 BLUE SAND 39.3
24359	5	Nov-88	613477	254.8	25.3 Fr	25.3 -0.9	8.8	36	120		3108	WS	MOE# 5724359
	13		4883632				2.0				RC	DO	0.0 BRWN CLAY 3.0 BRWN CLAY SAND GRVL 12.5
												_ •	BLUE CLAY GRVL 19.5 BLUE CLAY 23.5 BLUE CLAY
													SAND 25.3 BLUE SAND 26.2
24360	5	Nov-88	613475	254.8	23.8 Fr	24.7 -0.9	7.6	91	60		3108	WS	MOE# 5724360
550	13		4883610			0.3	0				RC	DO	0.0 BRWN CLAY SAND GRVL 8.2 BLUE CLAY GRVL
	13		.000010									20	19.2 SAND 19.8 BLUE CLAY SAND 23.8 SAND 25.6
													13.2 3/110 13.0 DEGE CENT 3/110 23.0 3/110 23.0

LABEL		DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME		DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
24362	5	Nov-88	613546	253.9	44.8 Fr	45.7 -0.9	31.7	273	60	45.7	3108	WS	MOE# 5724362
	13		4883653								RC	DO	0.0 BRWN CLAY 2.1 BRWN CLAY SAND GRVL 14.3
													BLUE CLAY GRVL 25.0 BLUE CLAY 35.1 BLUE CLAY
													SAND 36.9 BLUE CLAY 44.8 SAND 46.6
24659	5	Feb-89	613869	242.9	37.8 Fr	38.7 -0.9	19.5	91	120	38.1	3108	WS	MOE# 5724659
	13		4883778								RC	DO	0.0 BRWN CLAY 4.9 BLUE CLAY 23.2 SILT 24.4
													BLUE SAND 32.9 BLUE CLAY SAND 37.8 BLUE SAND
													39.6
24660	5	Feb-89	613863	241.7	34.7 Fr	36.9 -0.9	22.3	32	120	36.6	3108	WS	MOE# 5724660
	13		4883775								RC	DO	0.0 BRWN CLAY 4.0 BRWN CLAY GRVL 9.1 BLUE
													CLAY 10.7 SAND 17.1 BLUE CLAY 20.1 BLUE CLAY
													SAND GRVL 27.4 BLUE CLAY 30.5 GRN CLAY GRVL
													34.7 BLUE SAND 37.8
24694	5	Mar-89	613629	251.8	44.5 Fr	44.8 -0.9	26.2	91	60	44.2	3108	WS	MOE# 5724694
	13		4883694								RC	DO	0.0 FILL 0.6 GRVL 7.9 BRWN GRVL SAND 19.5
													BLUE CLAY HARD 35.4 BLUE CLAY SOFT 39.9 BLUE
													SAND 41.1 BLUE CLAY GRVL 44.5 BLUE SAND 45.7
24898	5	May-89	613548	244.8	30.8 Fr	32.6 -1.8	22.3	45	120	32.0	3108	WS	MOE# 5724898
	13	,	4883067								RC	DO	0.0 BRWN CLAY GRVL STNS 7.3 BLUE CLAY SAND
											-		GRVL 25.6 BLUE CLAY 30.8 BLUE SAND 34.7
24899	5	May-89	613500	251.8	49.4 Fr	49.4 -1.8	32.6	27	180	50.6	3108	WS	MOE# 5724899
	13	.,	4883296		-						RC	DO	0.0 TPSL 0.6 BRWN CLAY SAND GRVL 7.0 BLUE
													CLAY SAND GRVL 15.8 BLUE CLAY 34.7 BLUE FSND
													SILT 51.5 BLUE SILT 52.7
27944	4	Mar-91	614308	219.8	25.0 Fr	24.1 -0.9	4.6	23	720	22.9	1350	WS	MOE# 5727944
	14		4882455								CT	DO	0.0 BRWN SAND GRVL FILL 1.8 BLCK TPSL PEAT
													4.3 GREY CLAY 7.9 GREY SILT CLAY 13.7 GREY
													CLAY 24.4 BRWN SAND GRVL 25.9
28003	5	May-91	614433	233.2	29.6 Fr	28.7 -0.9	10.7	227	90	27.4	4645	WS	MOE# 5728003
2000	14	, 52	4882941			2017 015	20			_,	RC	DO	0.0 BRWN CLAY SILT STNS 9.1 GREY CLAY SILT
			10023 11								110	20	STNS 11.0 BRWN CLAY SILT STNS 15.2 GREY CLAY
													SILT STNS 21.3 GREY FSND CSND 30.5
28004	5	May-91	614421	235.0	30.5 Fr	29.6 -0.9	10.7	273	90	27.4	4645	WS	MOE# 5728004
23004	14	IVIUY JI	4883001	233.0	30.3 11	25.0 0.5	10.7	213	50	۷,٠٦	RC	DO	0.0 BRWN CLAY SILT STNS 11.0 GREY CLAY SILT
			4003001								110	50	STNS 11.3 BRWN CLAY SILT STNS 15.2 GREY CLAY
													SILT STNS 19.8 GREY CLAY DNSE 21.3 GREY FSND
													CSND 30.5
28005	5	May-91	614427	233.8	29.3 Fr	28.3 -0.9	10.7	273	90	27.4	4645	WS	MOE# 5728005
	14	- ,	4882970								RC	DO	0.0 BRWN CLAY SILT STNS 9.1 GREY CLAY SILT
	-		- 3								-	-	STNS 11.0 BRWN CLAY SILT STNS 15.2 GREY CLAY
													SILT STNS 19.8 GREY CLAY SILT STNS 21.3 GREY
													FSND CSND 30.5
													10110 00110 00.0

LABEL		DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME		DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m		L/min	min		METHOD	STAT	DESCRIPTION OF MATERIALS
28006	5	May-91	614445	231.3	30.5 Fr	29.6 -0.9	10.7	227	120	27.4	4645	WS	MOE# 5728006
	14		4882880								RC	DO	0.0 BRWN CLAY SILT STNS 11.0 GREY CLAY SILT
													STNS 11.6 BRWN CLAY SILT STNS 15.8 GREY CLAY
													SILT STNS 22.9 GREY FSND CSND 30.5
28227	5	Jun-91	614415	231.3	30.5 Fr	29.6 -0.9	10.7	273	90	27.4	4645	WS	MOE# 5728227
	14		4883060								RC	DO	0.0 BRWN CLAY SILT STNS 9.1 GREY CLAY SILT
													STNS 11.3 BRWN CLAY SILT STNS 15.2 GREY CLAY
													SILT STNS 19.8 GREY CLAY SILT STNS 21.3 30.5
28228	5	Jun-91	614443	232.3	30.5 Fr	29.6 -0.9	10.7	273	90	27.4	4645	WS	MOE# 5728228
	14		4882912								RC	DO	0.0 BRWN CLAY SILT STNS 9.1 GREY CLAY SILT
													STNS 11.3 BRWN CLAY SILT STNS 15.2 GREY CLAY
													SILT STNS 19.8 GREY CLAY DNSE 21.3 GREY FSND
													CSND 30.5
28363	4	Sep-91	614042	219.8	29.6 Fr	30.5 -1.8	2.4	341	120		3108	WS	MOE# 5728363
	13		4881690								RC	DO	0.0 TPSL CLAY 3.0 BLUE CLAY 6.1 BLUE CLAY
													WDFR 12.2 BLUE CLAY 29.6 BRWN SAND 32.3
31235	4	Oct-94	614255	219.8	25.9 Fr	24.7 -1.2	6.1	18	2880	24.4	4645	WS	MOE# 5731235
	14		4882412								RC	DO	0.0 BRWN SAND 1.5 GREY CLAY 12.2 GREY SAND
													GRVL LOOS 12.8 GREY SILT CLAY SOFT 16.2 GREY
													SILT CLAY SOFT 22.9 GREY SILT CSND LOOS 25.9
22212			640407			505.10			200		5700		GREY SILT SAND CLAY 31.1
32848	5	Jul-97	613427	255.7	57.9 Fr	58.5 -1.2	34.1	18	360	57.6	6782	WS	MOE# 5732848
	13		4883602			58.5 -1.2					CT	DO	0.0 GREY FILL 1.5 TPSL 2.1 GREY CLAY MSND
24255		A 00	64.4200	2240	25.0.5	244 42	7.6	406	260	44.0	4645	\A/C	MGVL 31.7 GREY CLAY MSND 50.9 GREY FSND 60.4
34355	5	Apr-99	614289	224.0	25.9 Fr	24.1 -1.2	7.6	496	360	11.0	4645	WS	MOE# 5734355
	15		4882747								RC	DO	0.0 BRWN CLAY STNS HARD 6.7 GREY CLAY STNS
25464		NA 00	64.44.60	220.0	25.0.5	247.42	42.5	01	100	10.2	4645	\A/C	LYRD 19.8 BRWN SAND GRVL LOOS 25.9
35161	5	May-00	614169	228.0	25.9 Fr	24.7 -1.2	12.5	91	180	19.2	4645	WS	MOE# 5735161 TAG#ASSMNT
	14		4883011								RC	DO	0.0 BRWN FILL SOFT 0.6 BRWN SAND CLAY SOFT
													4.3 GREY CLAY STNS HARD 17.1 BRWN CLAY SAND
25005			64.42.46	220.0	25.0.5	247.42	42.4	4-	240	20.7	4645	14.6	LYRD 19.2 BRWN SAND GRVL LOOS 25.9
35985	5	Mar-01	614346	229.8	25.9 Fr	24.7 -1.2	13.1	45	240	20.7	4645	WS	MOE# 5735985
	15		4883115								RC	DO	0.0 BRWN FILL CLAY SOFT 4.9 BRWN CLAY HARD
													11.6 BRWN SAND SILT SOFT 12.2 GREY CLAY STNS
25000			64.4075			217.12							HARD 20.1 GREY SAND SILT LOOS 25.9
35986		Mar-01	614375	229.2	25.9 Fr	24.7 -1.2	13.1	227	60	14.9			MOE# 5735986
	15		4883113								RC	DO	0.0 BRWN CLAY FILL 4.9 BRWN CLAY DNSE 11.6
													BRWN SAND SILT LOOS 12.2 GREY CLAY STNS HARD
25007		A 04	64.430=	226.5	20.0.5	277.42	42.4	4.5	200	22.2	4645	1470	20.4 GREY SAND LOOS 25.9
35987	5	Apr-01	614297	229.5	29.0 Fr	27.7 -1.2	13.1	45	300	23.2	4645	WS	MOE# 5735987
	15		4883116								RC	DO	0.0 BRWN FILL SOFT 4.9 BRWN CLAY STNS HARD
													11.6 GREY CLAY DNSE 16.5 GREY SILT SAND LOOS
													19.8 GREY SAND LOOS 29.0

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD	TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
35988	5	May-01	614281	228.9	25.9 Fr	24.7 -1.2	12.8	45	300	18.9	4645	WS	MOE# 5735988
33366	15	iviay-01	4883111	220.5	23.9 FI	24.7 -1.2	12.0	43	300	10.5	RC	DO	0.0 BRWN FILL SOFT 4.9 BRWN CLAY HARD 12.2
	15		4003111								NC	ЪО	GREY CLAY DNSE 19.2 GREY SAND LOOS 25.9
36586	5	Oct-01	613751	224.6	24.4 Fr	23.2 -1.2	17.1	27	180	22.9	4645	WS	MOE# 5736586
30380	13	001-01	4882370	224.0	24.4 []	23.2 -1.2	17.1	21	100	22.5	RC	DO	0.0 BLCK TPSL HARD 0.3 BRWN CLAY STNS HARD
	13		4882370								NC .	ЪО	10.7 GREY CLAY DNSE 15.5 BRWN SAND LOOS 22.9
													BRWN SAND GRVL LOOS 24.4 GREY CLAY HARD 24.4
37569	4	Jan-03	613757	224.0			NR				2801	AB	MOE# 5737569
37303	13	Jan-05	4882270	224.0			INIX				2001	-	0.0
37595	5	Aug-02	614185	228.0	25.9 Fr	24.7 -1.2	13.1	227	120	14.6	4645	WS	MOE# 5737595
37333	15	Aug 02	4883106	220.0	23.5 11	24.7 1.2	15.1	221	120	14.0	RC	DO	0.0 BRWN CLAY STNS HARD 4.0 GREY CLAY DNSE
	13		4003100								ite	ЪО	11.3 GREY CLAY STNS HARD 21.3 GREY SAND LOOS
													25.9
38525	4	Oct-03	613617	231.3	24.1 -	22.9 -1.5	17.4	205	60	20.1	1663	WS	MOE# 5738525 TAG#A001444
	13		4882058								RC	DO	0.0 BLCK TPSL 0.3 BRWN CLAY GRVL 14.9 BRWN
													FSND MGVL 24.7 BRWN FSND 30.5
38753	5	Feb-04	614343	230.7	22.9 Fr	21.6 -1.2	13.7	1046	180	15.8	4645	WS	MOE# 5738753 TAG#A003587
	15		4882861								RC	DO	0.0 BRWN CLAY STNS HARD 10.4 GREY CLAY STNS
													HARD 19.2 GREY SAND LOOS 22.9
38754	5	Feb-04	614343	230.7	22.9 Fr	21.6 -1.2	13.7	1046	180	15.8	4645	WS	MOE# 5738754 TAG#A003590
	15		4882861								RC	DO	0.0 BRWN CLAY STNS HARD 10.4 GREY CLAY STNS
													HARD 19.2 GREY SAND LOOS 22.9
39065	4	Aug-04	613711	226.8			7.9				1663	AS	MOE# 5739065
	13		4882256								OTH	NU	0.0 BRWN SAND 0.3 YLLW 1.5 BRWN SAND 1.8
													YLLW 7.6 PRDG 7.9
39101	5	Aug-04	614258	227.7	20.1 Un	17.1 -2.1	9.8	27	180	11.0	7178	WS	MOE# 5739101 TAG#A006251
	14		4882824								RC	DO	0.0 BRWN CLAY STNS 4.0 BRWN CLAY SILT 9.1
													BLUE CLAY 18.0 BRWN SAND GRVL 20.1 BLUE CLAY
													28.0
39754	5	May-05	614254	224.3			NR				1350	AB	MOE# 5739754 TAG#A014296
	14		4882761								СТ	DO	0.0 BRWN CLAY SILT 4.0 BRWN GRVL BLDR 11.6
39755	5	May-05	614247	224.9	20.1 Un		7.6	86	60	9.4	1350	WS	MOE# 5739755 TAG#A014295
	14		4882782								CT	DO	0.0 BRWN CLAY SILT 4.0 BRWN GRVL BLDR 11.0
													GREY CLAY GRVL SAND 18.3 BRWN SAND MSND 21.9
39978		Jul-05	614258	227.7		19.5 -1.5	9.4	68	120	13.1	7178	WS	MOE# 5739978 TAG#A006251
10:05			4882824	22.5	22.2		4		4		RC	DO	0.0 BRWN SAND GRVL 21.0 BLUE CLAY 21.6
40135	5	Aug-05	614242	236.8	22.9 Un	21.6 -1.2	13.7	50	180	14.9	4645	WS	MOE# 5740135 TAG#A031010
	14		4882989								RC	DO	0.0 BRWN CLAY STNS 6.7 GREY CLAY 19.8 GREY
10:-0				225 -	25.2.5		4		4		4465		SAND 22.9
40153	6	Aug-05	614189	228.9	25.0 Fr	22.9 -3.0	15.2	91	180		1413	WS	MOE# 5740153 TAG#A029629
	14		4883101								RA	DO	0.0 BRWN CLAY HARD 5.2 GREY CLAY HARD 19.8
													GREY FSND 25.9

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD	TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
40154	6	Aug-05	614234	229.2	24.1 Fr	23.2 -1.5	14.9	73	60	21.9	1413	WS	MOE# 5740154 TAG#A029636
40154	14	Aug-05	4883102	229.2	24.1 FI	25.2 -1.5	14.9	/3	60	21.9	RC	DO	0.0 BRWN CLAY GRVL SOFT 7.0 GREY CLAY DNSE
	14		4663102								NC.	ЪО	20.7 GREY SAND GRVL DRTY 22.9 GREY SAND 24.7
40155	6	Aug-05	614201	233.5	25.9 Fr	25.0 -1.5	14.9	132	60	22.9	1413	WS	MOE# 5740155 TAG#A029637
40133	14	Aug 05	4882902	233.3	23.3 11	25.0 1.5	14.5	132	00	22.5	RC	DO	0.0 BRWN SAND GRVL SOFT 1.8 BRWN CLAY DNSE
			4002302								ii.c	50	7.0 GREY CLAY DNSE 22.3 GREY SAND GRVL LYRD
													24.1 GREY SAND GRVL LYRD 26.5
41127	6	Sep-06	614130	235.0			6.1				7178	AS	MOE# 5741127
	14	•	4884023								-	-	0.0 0.6 STNS 5.5 10.1
41128	6	Sep-06	614134	234.1			5.5				7178	AS	MOE# 5741128
	14	•	4883991								-	-	0.0 12.5
41200	6	Sep-06	614253	228.6	24.1 Fr	23.2 -0.9	13.7	77	60		1413	WS	MOE# 5741200 TAG#A038610
	14		4883106								RA	DO	0.0 BRWN CLAY 5.2 GREY CLAY 20.7 BLCK SAND
													24.1
7041190	4	Oct-06	613771	223.1	307.8 Un		54.9	9	60	55.8	2662	OW	MOE# 7041190 TAG#A041125
	13		4882283		306.0 Un						RA	-	0.0 GREY GRVL 0.3 BLCK TPSL 0.9 BRWN CLAY
					303.9 Un								SNDY 2.4 GREY CLAY SLTY GRVL 5.8 GREY SILT
													6.7 GREY CLAY SNDY GRVL 16.5 GREY SAND SLTY
													GRVL 19.5 GREY SAND GRVL 25.6 GREY SAND GRVL
													26.8 GREY CLAY SLTY 30.8 GREY FSND SILT 35.7
													GREY CLAY SLTY GRVL 41.5 GREY CLAY SLTY SAND
													44.5 GREY CLAY SLTY 46.0 GREY SAND SLTY GRVL
													48.8 GREY SILT SNDY CLAY 56.1 GREY SAND SLTY
													57.6
7041193	4	Oct-06	613774	223.1		75.9 -10.1	NR				2662	OW	MOE# 7041193 TAG#A041126
	13		4882281								RA	-	0.0 GREY GRVL FILL 0.6 BLCK TPSL 3.0 BRWN
													CLAY SNDY GRVL 7.9 GREY CLAY SLTY GRVL 13.1
													GREY CLAY SLTY GRVL 22.9 GREY CLAY GRVL SNDY
													49.1 GREY SAND 54.9 GREY CLAY 60.0 GREY SAND
													65.8 GREY SAND GRVL 82.9 GREY SAND GRVL 88.1
7010111			61.106.1	222.2									GREY CLAY SNDY GRVL 89.0
7049141	6	Jul-07	614264	229.8	22.9 Fr		10.7	55	60		1413	WS	MOE# 7049141 TAG#A060253
	14		4882863								RA	DO	0.0 BRWN CLAY HARD 5.2 GREY CLAY STNS HARD
7051151		A 07	C1 420C	227.7	22.0 5-	22.0.00	0.1	150	60		1.412	\A/C	18.3 BLCK SAND MSND 23.8
7051151	6	Aug-07	614306 4882832	227.7	22.9 Fr	22.9 -0.9	9.1	150	60		1413	WS	MOE# 7051151 TAG#A060272
	14		4002032								RA	DO	0.0 BRWN CLAY PCKD 6.4 GREY CLAY STNS HARD 19.8 GREY MSND 23.8
7104868	5	Mar-08	614199	220.8	25.9 Fr		11.6	91	180	13.1	4645	WS	MOE# 7104868 TAG#A022296
7104000	5 14	iviai-UO	4882860	223.0	4J.J FI		11.0	31	100	13.1	4645 RC	DO	0.0 BRWN CLAY STNS HARD 7.6 GREY CLAY SILT
	74		4002000								NC.	50	HARD 15.5 GREY CLAY HARD 22.3 GREY SAND LOOS
													25.9
7107245	5	May-08	614181	228 3	25.9 Fr		4.9	27	180	24.1	4645	WS	MOE# 7107245 TAG#A062865
, 10, 243	14	widy 00	4883101	220.5	25.5 11		7.5	۷,	100	۷.1	RC	DO	0.0 BRWN CLAY HARD 7.9 GREY CLAY STNS HARD
	± r		.000101									20	21.6 BRWN SAND LOOS 25.9
													CT.O DIVANIA DUINC FOOD 57:3

LABEL	CON	DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
7115769	5	Sep-08	614226	235.6	25.9 Fr	24.7 -1.2	12.2	23	60	19.8	4645	WS	MOE# 7115769 TAG#A071384
	14		4883009								RC	DO	0.0 BRWN CLAY STNS HARD 7.0 GREY CLAY HARD
													19.5 GREY SAND LOOS 25.9
7115770	5	Sep-08	614305	231.0	25.9 Fr	24.7 -1.2	13.4	23	60	19.8	4645	WS	MOE# 7115770 TAG#A071379
	14		4883079								RC	DO	0.0 BRWN CLAY STNS HARD 9.1 GREY CLAY HARD
													18.6 GREY SAND LOOS 25.9
7128920	5	Mar-08	614217	232.0	22.9 Fr		12.5	41	180	20.4	4645	WS	MOE# 7128920 TAG#A022293
	14		4883041								RC	DO	0.0 BRWN CLAY STNS HARD 7.9 GREY CLAY HARD
													18.9 GREY SAND LOOS 22.9
7130793	5	Jul-09	614310	229.8	21.3 Un	21.3 -1.5	12.8	55	60	14.9	1663	WS	MOE# 7130793 TAG#A075139
	14		4883129								RC	DO	0.0 BRWN TPSL 0.6 BRWN CLAY GRVL 8.8 GREY
													CLAY GRVL SILT 18.3 GREY SILT 19.2 GREY SAND
													GRVL CLAY 20.7 GREY FSND 22.3 GREY FSND 23.2
													GREY SAND SLTY 25.3
7130803	5	Jul-09	614299	229.2		27.1 -1.2	NR				1663	AS	MOE# 7130803
	14		4883106								OTH	NU	0.0
7140469	4	Sep-09	613638	232.6			NR				1663	AS	MOE# 7140469
	13		4882276								OTH	NU	0.0 BRWN TPSL 0.3 BRWN SAND FILL 1.8 YLLW
													2.1 BRWN SAND 6.1 YLLW 13.4 YLLW 13.7
80101	5	Feb-12	614214	226.5	24.4 Fr	23.5 -0.9	11.3	45	60		1413	WS	MOE# 7180101 TAG#A124847
	14		4883109								RC	DO	0.0 BRWN CLAY HARD 5.2 GREY CLAY STNS HARD
													21.3 BLCK SAND FGRD MGRD 24.4
7236235		Dec-14	613773	223.1	2.7 Un	24.4 -3.0	NR				7437	AB	MOE# 7236235 TAG#A041126
			4882290								BR	Oth	0.0
7236236		Dec-14	613771	223.1	9.1 Un		NR				7437	AB	MOE# 7236236 TAG#A041125
			4882286								DG	Oth	0.0
7236237		Dec-14	613780	222.8	4.0 Un		NR				7437	AB	MOE# 7236237
			4882279								DG	Oth	0.0
7294115	4	May-17	613845	220.1		31.4 -1.5	0.9	64	60	11.9	1663	WS	MOE# 7294115 TAG#A213043
	13		4882309								RC	DO	0.0 BRWN CLAY GRVL 0.6 BLCK TPSL 1.5 BRWN
													CLAY GRVL 4.3 GREY CLAY GRVL 22.3 GREY CLAY
													SILT 29.9 GREY CLAY 31.4 GREY FSND 32.9

	QUALITY:		TYPE:		USE:			ME	THOD :
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	CT	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy.

Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

September 5, 2023 22517668

APPENDIX D

Borehole Logs and Well Completion Details

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-29-2022 to Mar-29-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (500 mm) SS 18 SILTY CLAY: 0.50 Brown to grey, trace gravel, cobble fragment, cohesive w<PL, stiff to 2 SS 11 water 3 SS 10 SS 18 4 5 SS 34 SANDY CLAYEY SILT TILL: 6 SS 27 Grey, trace gravel, cohesive w>PL, very stiff to hard. SS50/127mm SILTY SAND: 7.62 Grey, some plastic fines, wet, very SS 61 8 dense.

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-29-2022 to Mar-29-2022 COMPILED BY BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) ž 60 80 10 20 30 GR SA SI CL Continued END OF BOREHOLE Notes: 1). Upon completion of drilling, borehole had caved at 6.1 meter below ground surface (mbgs).

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-30-2022 to Mar-30-2022

COMPILED BY

FJ

BH L	OCATION: SOIL PROFILE		S	SAMPL	.ES				MIC CC STANCE				oe 420								4 D
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR ST NCONF UICK TI	0 6 RENG INED RIAXIAL	0 8 TH (kl + . ×	Pa) FIELD V & Sensit	ANE	ı	TER CO	w DNTEN	LIQUID LIMIT W _L ——• Γ (%)	POCKET PEN. (Cu) (KPa)	NATURAL UNIT WT (kN/m³)	AI GRAII DISTRI	BUTIC %)
0.00	TOPSOIL: (400 mm)	7 7 7 7																			
0.40	SILTY CLAY: Brown, trace gravel, cohesive w <pl, soft="" stiff.<="" td="" to="" very=""><td></td><td>1</td><td>SS</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		1	SS	7																
<u>1</u>	·		2	SS	3																
			3	SS	17																
2																					
2.28	CLAYEY SILT TILL: Brown to grey, trace sand, trace gravel, cohesive w <pl, hard.<="" td=""><td></td><td>4</td><td>SS</td><td>31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		4	SS	31																
	grey		5	SS	46																
					40																
			6	SS	46																
<u>5</u>		0																			
3																					
6.20	END OF BOREHOLE Notes:	VX.C	7	<u> </u>	V100m	m															
	Notes: 1). Borehole was terminated due to auger refusal. 2). Upon completion of drilling, borehole had caved at 5.5 meters below ground surface (mbgs) and groundwater level was at approximately at 0.7 meters below ground surface (mbgs).																				

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-24-2022 to Mar-24-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (500 mm) 1 SS 4 SILTY CLAY: 0.50 Brown, cohesive w~PL, firm to very stiff. 2 SS 15 water SS 13 3 SS 17 oxidizing staining 30 5 SS SS 20 6 **CLAYEY SILT TILL:** 6.10 SS 23 Grey, trace gravel, trace sand, cohesive w~PL, very stiff to hard. SS Continued Next Page

<u>GRAPH</u>

NOTES

 $+3, \times^3$: Numbers refer

to Sensitivity

O $^{8=3\%}$ Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-24-2022 to Mar-24-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 GR SA SI CL Continued **CLAYEY SILT TILL:** Grey, trace gravel, trace sand, cohesive w~PL, very stiff to hard.(Continued) 9 SS 76 10.67 SILTY SAND: 10 SS50/127mm Grev. wet. verv dense 10.87 **END OF BOREHOLE** Notes: 1). Upon completion of drilling, groundwater level was at approximately 0.30 meter below ground surface (mbgs).
2). A 50mm diameter monitoring well was installed with screens from 7.6 mbgs to 10.6 mbgs.

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-23-2022 to Mar-23-2022

COMPILED BY

FJ

BH LOCATION: Eqipment: Drill Tech Geoprobe 420M

DITE	OCATION: SOIL PROFILE			SAMPL	ES					Orill Ted NE PEN PLOT										
	30IL FIXOI ILL			AIVIF L	.L3	띪				PLOT 0 60			00	PLASTI LIMIT	C NAT	URAL	LIQUID LIMIT	zi	T W T	REMARKS AND
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF UICK TE	RENGT INED RIAXIAL	ΓΗ (kl + ×	Pa) FIELD V. & Sensit LAB VA	!	W _P ⊢ WA	TER CO		LIQUID LIMIT W _L ————————————————————————————————————	POCKET PE (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAIN SIZE DISTRIBUTIO (%) GR SA SI
0.00		7/ 1/																		
0.30	SILTY CLAY: Brown, cohesive w <pl, soft="" to="" very<br="">stiff.</pl,>		1	SS	4															
			2	SS	9															
			3	SS	17															
			4	SS	19															
			5	SS	26															
4.57	SILTY SAND: Brown, wet, compact.		6	SS	26															
5.07	CLAYEY SILT TILL: Grey, trace sand, trace gravel, cohesive w <pl, hard.<="" stiff="" td="" to="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>																			
			7	SS	40															
			8	SS	41	1														

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) ż 40 60 80 10 20 30 GR SA SI CL Continued CLAYEY SILT TILL: Grey, trace sand, trace gravel, cohesive w<PL, very stiff to hard.(Continued) SS 39 10 SS 28 **END OF BOREHOLE** 11.13 Notes: 1). Upon completion of drilling, groundwater level was at approximately 0.91 meter below ground surface (mbgs).

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-25-2022 to Mar-25-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (450 mm) 0.45 SILTY SAND: SS 16 Brown, trace gravel, wet, compact. 2 SS 19 SS 21 3 2.28 SAND: Brown, some silt, trace to some SS 4 39 gravel, cobble fragment, moist to wet, dense. CLAYEY SILT TILL: 2.74 Grey, trace gravel, cohesive w<PL, very stiff to hard. SS 28 5 SS 64 SS 30 SS50/270n Continued Next Page

<u>GRAPH</u>

NOTES

 $+3, \times^3$: Numbers refer

to Sensitivity

O 8=3% Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-25-2022 to Mar-25-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION NUMBER **DESCRIPTION** (%) WATER CONTENT (%) 40 60 80 10 20 30 GR SA SI CL Continued **CLAYEY SILT TILL:** Grey, trace gravel, cohesive w<PL, very stiff to hard.(Continued) 9 SS 35 10 SS 40 END OF BOREHOLE 10.87 Notes: 1). Upon completion of drilling, groundwater level was at approximately 0.30 meter below ground surface (mbgs). 2). A 50mm diameter monitoring well was installed with screens from 6.10mbgs to 9.14 mbgs.

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-29-2022 to Mar-29-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (450 mm) 0.45 SILTY CLAY: SS 10 Brown to grey, cohesive w<PL to w>PL, soft to very stiff. 7 2 SS w>PL 3 SS 3 SS 15 4 no soil sample recovery SS 16 5 grey SS 7 6 SANDY CLAYEY SILT TILL: 6.10 Grey, trace gravel, cobbles SS 56 fragment, cohesive w<PL, hard. SS 89 Continued Next Page

 GRAPH NOTES + ³, × ³: Numbers refer to Sensitivity

O 8=3% Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-29-2022 to Mar-29-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 GR SA SI CL Continued SANDY CLAYEY SILT TILL: Grey, trace gravel, cobbles fragment, cohesive w<PL, hard.(Continued) 9 SS50/127mm SS50/152mm 10 10.92 END OF BOREHOLE Notes: 1). Upon completion of drilling, groundwater level was at approximately 1.5 meter below ground surface (mbgs).
2). A 50mm diameter monitoring well was installed with screens from 7.62 mbgs to 10.67 mbgs.

REF. NO.: 22517668 PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 COMPILED BY

J. 1 LC	OCATION: SOIL PROFILE		s	SAMPL	.ES			DYNA RESIS	MIC CO STANCE	NE PEN PLOT	NETRA	TION	oe 420	NATI	URΔI			L	REMAR	
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR STI NCONF UICK TE	0 6 RENG INED	0 8 TH (ki + ×	Pa) FIELD V & Sensit	ANE	TER CC	w O ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN S DISTRIBL (%)	O SIZ UTI(
0.00	TOPSOIL: (250 mm)	1/1/																		
0.25	SILTY CLAY: Brown, trace sand, trace gravel, cobble fragment, cohesive w~PL, firm to hard.		1	SS	6															
<u> </u>	water		2	SS	7															
			3	SS	17															
			4	SS	20															
			5	SS	38															
4.57	SILTY SAND: Brown, trace gravel, rock fragments, moist, very dense.		6	S\$50)/152m	m														
<u>.</u>																				
	no soil sample recovery		7	SS5	0/25m	m														
				SS5			l													

GROUNDWATER ELEVATIONS

WSD

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-23-2022 to Mar-23-2022

COMPILED BY

FJ

	M: UTM NAD , ZONE											Mar-23					COM	IFILE	וסט	' FJ
BH LC	OCATION:		_			1	1	Eqipn	nent: D	Orill Te	ch G	eoprob	e 4201	М				1		
L	SOIL PROFILE		Ls	SAMPL	.ES	œ		RESIS	MIC CO TANCE	PLOT	<u></u>			PLASTI	C NATI MOIS CON	URAL	LIQUID	1.	M	REMARKS
(m)		5			(0)	'ATE S				0 6		0 10		LIMIT W _P	CON	TENT	LIMIT	PEN (PA	NIT (دُر	AND GRAIN SIZE
ELEV	DESCRIPTION	A P.	œ		3 m	NOF NOF	NO I	SHEA	AR STE	RENG	TH (ki	Pa) FIELD VA	NE	₩ _P		o		S. S.	RAL (KN/m	DISTRIBUTION
DEPTH		RAT,	MBE	出	페°	NDO.	EVA.	• QI	JICK TF	RIAXIAL	. ×	& Sensitiv LAB VA	rity NE	WA	TER CC	ONTEN	T (%)	P.S.	NATI	(%)
	Continued	ST	N	₽	ż	8 8	E	2	0 4	0 6	8 0	0 10	0	1	0 2		30			GR SA SI C
DEPTH	DESCRIPTION Continued 1). Upon completion of drilling, borehole had caved at 5.4 meter below ground surface (mbgs).	STRATA PLOT	NUMBER	TYPE	"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION	SHEAT OUT	AR SI II NCONFILION IL NCONFIL	RENG INED INED INED INED INED INED INED INED	1	Pa) FIELD VA & Sensitiv LAB VA 0 10	ZE PLANT O CONTRACTOR OF THE PLANT OF THE PL					3/OOd (no)	NATURAL UNIT WT (KNIM")	(%)
00 00 0 pt 10 10 10 10 10 10 10 10 10 10 10 10 10																				
200																				
100																				

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD, ZONE

Date: Mar-24-2022 to Mar-24-2022

COMPILED BY

FJ

BH LO	OCATION:							Eqipr	nent: [Orill Te	ch C	Seopro	be 420	M						
	SOIL PROFILE		s	AMPL	.ES			DYNA RESIS	MIC CC STANCE	NE PEI E PLOT	NETR/	ATION -		DLACTI	_ NAT	URAL	LIOLID		F	REMARKS
(m)		-				GROUND WATER CONDITIONS						80	100	PLASTI LIMIT	MOIS CON	TURE	LIQUID LIMIT	EN EN	NATURAL UNIT WT (kN/m³)	AND
ELEV		임			S E	W A SNC	N _C	SHE	AR ST	RENG	iTH (k	:Pa)	-	W _P	,	w 0	WL	Ē,	Nm.	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ITA	BER		BLOWS 0.3 m	AND J.F.C	'ATI(0 U	NCONF	INED	+	FIELD \ & Sensi	/ANE itivity	,,,,		-		POCKET PEN. (Cu) (kPa)	JA X	(%)
		STRATA PLOT	NUMBER	TYPE	Į.	3RO.	ELEVATION				- ×	LAB V	ANE 100		TER CO		T (%) 30		l≱	
0.00	Ground Surface TOPSOIL: (300 mm)	71 1/2	Z		-	0 0	ш .	 		,,,		1	100	├-	J 2		-	\vdash	\vdash	GR SA SI CL
0.00	TOT SOIL: (SOO MIIII)	1,	-																	
_ 0.30	SILTY CLAY: Brown to grey, trace sand, cohesive w <pl, firm="" hard.<="" td="" to=""><td></td><td>1</td><td>SS</td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		1	SS	6															
- - -	w <pl, firm="" hard.<="" td="" to=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		<u> </u>																	
<u>1</u> -			2	SS	7															
-			_																	
- - - 2			3	SS	15															
-																				
-			4	SS	29															
-																				
_3																				
-			5	SS	34															
-																				
<u>4</u>																				
-																				
-				90	07															
- - 5			6	SS	97															
- -																				
-																				
- - -																				
6																		1		
6.10	Grey, trace gravel, moist to wet,	儲	7	SS50)/101m	m														
}	very dense.	儲	\vdash															1		
F		擂																		
2 4 6 2		出抗]																	
D T		讎																		
H C C C C C C C C C C C C C C C C C C C		儲																		
- 88.W		翓																		
-231004		腽																		
		間																		
8 7 7F	END OF PORTUGIE	1111	8	SS	50									<u> </u>				₩	₩	<u> </u>
7.75	END OF BOREHOLE																			
35 × 35	Continued Next Page	1	Ц		L	L	L	L		1			1				1	Щ	ш	

GRAPH NOTES

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-24-2022 to Mar-24-2022

COMPILED BY

FJ

	SOIL PROFILE		L³	AMPL	.ES			RESIS	TANCE	NE PEN PLOT	<u> </u>			DI ACTI	NATI	URAL	HOUR		E	REMARKS
(m) ELEV DEPTH	DESCRIPTION Continued	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHEA O UI • QI	AR STINCONFI	0 60 RENGT	0 8 TH (kF + ×	30 10	ANE vity NE	PLASTI LIMIT W _P 	TER CC		LIQUID LIMIT W _L ——I	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
	Notes: 1). Upon completion of drilling, borehole had caved at 4.2 meter below ground surface (mbgs) and groundwater was at approximate depth of 1.8 mbgs.																			

GRAPH + 3

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)

O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (450 mm) 0.45 SILTY CLAY: SS 4 Brown, trace sand, trace organics, cohesive w<PL, firm. SS 2 4 3 SS 6 SS 8 4 CLAYEY SILT TILL: 3.04 Brown to grey, trace sand, trace 5 SS 17 gravel, cohesive w<PL to w~PL, very stiff to hard. 6 SS 34 SS 24 SS 28 8 Continued Next Page

 GRAPH NOTES + ³, × ³: Numbers refer to Sensitivity

O 8=3% Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 GR SA SI CL Continued **CLAYEY SILT TILL:** Brown to grey, trace sand, trace gravel, cohesive w<PL to w~PL, very stiff to hard.(Continued) 9 SS50/101mm 10 SS50/127mm 10.80 END OF BOREHOLE Notes: A 50mm diameter monitoring well was installed with screens from 7.62 mbgs to 10.67 mbgs.

REF. NO.: 22517668 PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-26-2022 to Mar-26-2022 COMPILED BY

2	OCATION: SOIL PROFILE		s	AMPL	ES				MIC CO STANCE				oe 420	ΝΔΤΙ	IIRΔI			_	REM	IARKS
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR STI NCONF UICK TE	0 6 RENG INED RIAXIAL	0 { TH (kl + . ×	Pa) FIELD V & Sensit	'ANE	TER CO	OMTEN:	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AI GRAII DISTRI	ND N SIZ IBUTI(%)
0.00		<u> </u>																		
0.40	SILTY CLAY: Brown to grey, trace gravel, cohesive w~PL, stiff to hard.		1	SS	10															
Ĺ	 wet		2	SS	19															
			3	SS	26															
				SS	0.4															
			4	55	24															
	grey		5	SS	15															
4.57	SANDY CLAYEY SILT TILL: Grey, trace gravel, cobbles fragment, cohesive w <pl, hard.<="" td=""><td></td><td>6</td><td>SS50</td><td>)/127m</td><td>ım</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		6	SS50)/127m	ım														
6.09	SAND:																			
5.50	Grey, trace silt, cobbles fragment, wet, dense to very dense.		7	SS	60															
			8	SS	35															

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-26-2022 to Mar-26-2022

COMPILED BY

FJ

	DATU	JM: UTM NAD , ZONE							Date:	Mar-2	26-202	2 to 1	Mar-26	-2022				COM	PILE	D BY	, FJ
L	BH LO	OCATION:											eoprob	e 420	М						
		SOIL PROFILE		Ls	AMPL	ES			DYNAN RESIS	IIC COI	NE PEN PLOT	NETRAT	ION		DI ACT	_ NATI	URAL	LIQUID		F	REMARKS
Γ	(m)		-				TER		2	0 4	0 6	0 8	0 10	00	LIMIT	C NATI MOIS CON	TURE TENT	LIMIT	Ä.	۶ ا	AND
	ELEV		PLO			S E	W W	NO	SHEA	R STF	RENG	TH (kF	Pa)		W _P		w 	WL	A (RP.	AL UI N/m³)	GRAIN SIZE DISTRIBUTION
	DEPTH	DESCRIPTION	ΑŢ	BER		BLO 0.3	UND	/ATI(O UN	ICONFI	INED	÷	FIÉLD VA & Sensiti	ANE vity	\\\\\	TED CC	MITENI	T (0/)	P00 00	ATUR. (k	(%)
		Cartinus d	STR/	Σ	ΓΥΡΕ		SRO	ELE)							ı						CP SA SI CI
ŀ	7.98		0,	_	_	-		-													GIT SA SI CL
To a service of the s		END OF BOREHOLE Notes: 1). Upon completion of drilling, borehole had caved at 7.01 meter below ground surface (mbgs) and groundwater level was at approximately 4.8 meter below ground surface (mbgs).	STRATA PLOT	NUMBER	TYPE	"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION	• QU 2 2	UICK THE	RIAXIAL 0 6	0 8	LAB VA	NE 000	1		0 3	30	POCKET PEN. (Cu) (kPa)		
WSP SOLL OG 201G FJJBH																					

GRAPH +

+ 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc $^{\mbox{\bf 8}=3\%}$ Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision

REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture

Method: Solid Stem Auger

ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-29-2022 to Mar-29-2022

COMPILED BY

FJ

BH LOCATION:

SOIL PROFILE

SAMPLES

DYNAMIC CONE PENETRATION
RESISTANCE PLOT

PLASTIC MOISTURE
LIQUID

REMARKS

BH L	OCATION:							Eqipn	nent: [Orill Te	ch C	Geopro	be 420	М							
	SOIL PROFILE		s	AMPL	.ES			DYNA RESIS	MIC CC	NE PEI	NETR/	ATION -		DI ACTI	_ NATI	URAL	LIQUID		F	REM	MARKS
(m)		 -				GROUND WATER CONDITIONS		l					100	PLASTI LIMIT	MOIS CON	TURE	LIQUID LIMIT	Ä.	NATURAL UNIT WT (kN/m³)	А	ND
ELEV		PLO			BLOWS 0.3 m	W G SNO	N O	SHE	AR ST	RENG	TH (k	(Pa)	-	W _P	١	N	W _L	POCKET PEN. (Cu) (kPa)	AL U		IN SIZE IBUTION
DEPTH	DESCRIPTION	ΑTΑ	BER		0.3	N E	/ATI		NCONF		+	FIELD \ & Sensi	/ANE itivity	\\\\	ER CC	NITENI	T (04)	9 2 2	ATUR (k		%)
	Ground Surface	STRATA PLOT	NUMBER	TYPE	þ	SRO	ELEVATION					LAB V	'ANE 100	1			30		Ž	GR SA	SI CL
0.00		11/	-		-												 			OIT OF	01 02
-		1/ 7/																			
1		.\1,																			
- 0.45	SILTY CLAY:	W.	1	SS	6]															
-	Brown, trace gravel, cohesive w <pl, firm="" stiff.<="" td="" to="" very=""><td></td><td>Ш</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		Ш																		
F.																					
1			2	SS	11																
ŀ			<u> </u>			-															
F																					
-			\vdash			1															
ţ			3	SS	14																
2						1															
F																					
ļ						-															
Ė	 w <pl< td=""><td></td><td>4</td><td>SS</td><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>		4	SS	26																
ŀ						1															
F																					
3																					
3.04	SAND: Brown, some silt, wet, dense to very		5	SS	38																
ŀ	dense.	[• •				1															
F		١٠.																			
ţ		· .																			
ŀ		. •																			
4																					
F																					
-																					
-		[• •	6	COE	1/107~																
+		· .		330	/127m	JIII															
5		· .																			
-																					
ŧ		. • `																			
+																					
F																					
ļ.		[• •																			
6		· .																			
6.09	SANDY CLAYEY SILT TILL:		7 /	\ SS50	(101n	m															
-	Grey, cohesive w <pl, hard.<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>																				
ļ.																					
- E		M																			
VD.GPU 4-2																					
7 8		W]																		
- BRADFO		11																			
0.000																					
- 1088																					
7.62	SILTY SAND:		8	5.950)/152m	l m															
7.87	Brown, wet, very dense. END OF BOREHOLE		dash		1.0211	Γ											+				
1.07	Continued Next Page	1						Ц		1	1		1								

Continued Next Page

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-29-2022 to Mar-29-2022

COMPILED BY

FJ

ELEV DESCRIPTION A A A A A A A A A																					
(m) DESCRIPTION LUMIT CONTENT LUMIT WP W WATER CONTENT (%) Notes: 1). Upon completion of drilling, borehole had caved at 6.1 meter below ground surface (mbgs) and groundwater level was at approximately 1.5 meter below	BHLC				AMDI	FC								e 4201	VI				1		
Continued Continued Conti	<u> </u>	SUIL PRUFILE	Т		AIVIPL	.ES	K.								PLASTI	C NATI	JRAL TURE	LIQUID		_W.	
Continued Continued Conti	(m)		þ			ω _	VATE	7							LIMI I W _P	CON	TENT V	LIMIT W _I	T PEN (Pa)	UNIT	GRAIN SIZE
Continued Continued Conti	ELEV	DESCRIPTION	A PL	띪		LOW 0.3 m	V DN TION	Į OI	SHEA	AR STE	RENG ⁻ INFD	TH (kf +	Pa) FIELD VA	ŅE	-		—	<u></u>	OCKE (Cu.)	URAL (KN/r	DISTRIBUTION
Notes: 1). Upon completion of drilling, borehole had caved at 6.1 meter below ground surface (mbgs) and groundwater level was at approximately 1.5 meter below	DEFIII		-RAT	JMB	PΕ		ROUI	EVA.	• QI	JICK TF	RIAXIAL	×	LAB VA	nty NE					<u> </u>	MA⊤	(%)
1). Upon completion of drilling, borehole had caved at 6.1 meter below ground surface (mbgs) and groundwater level was at approximately 1.5 meter below	\vdash	Continued	S	ž		Z	9 2	П	2	0 4	0 6	8 0	30 10	00	1	0 2	0 3	30			GR SA SI C
	Tal (Color Report of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado) and talk of Brigado (Color Report of Brigado) and talk of Brigado) and talk of Brigado (Color Report of Brigado)	Notes: 1). Upon completion of drilling, borehole had caved at 6.1 meter below ground surface (mbgs) and groundwater level was at approximately 1.5 meter below	STRA	NUM	14PE		GRO CON	EFEV	• QI	JICK TF 0 4	RIAXIAL O G	X X X X X X X X X X X X X X X X X X X	LAB VA 30 10	NE 100							

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm ORIGINATED BY PM

DATUM: UTM NAD , ZONE Date: Mar-28-2022 to Mar-28-2022 COMPILED BY FJ

DATU	JM: UTM NAD , ZONE							Date	Mar-2	28-202	2 to	Mar-28	3-2022				COM	PILE	D B	r F	J
BH L	OCATION:								ment: [e 420	М					_		
	SOIL PROFILE		S	SAMPL	.ES			RESIS	MIC CC STANCE	PLOT	NETRA	TION		DI AST	ıc NAT	URAL	LIOUID		П	REM	IARKS
(m)		F				GROUND WATER CONDITIONS			20 4	10 6	0 8	30 1	00	LIMIT	IC NAT MOIS CON	TENT	LIQUID LIMIT W _L (%)	a EN	NIT (A	ND
ELEV	DECODIDATION	STRATA PLOT	~		BLOWS 0.3 m	W C	NO.		AR ST		TH (kl	Pa)		W _P		<i>N</i>	W _L	X 유	₹AL U KN/m³	DISTR	N SIZE IBUTION
DEPTH	DESCRIPTION	ATA	NUMBER	ш	0.0	NO TIQ	ELEVATION		NCONF		+	FIELD V & Sensit LAB V	ANE ivity	WA	TER CO	ONTENT	Γ(%)	9 0 0	MATU!	(%)
	Ground Surface		Š	TYPE	ż	GRC	EE						00			20 3	30		_	GR SA	SI CI
0.00	TOPSOIL: (600 mm)	71 14																			
		1/ 7/																			
-		11/	ŀ																		
0.60	SILTY CLAY:	1	-		_	ł															
- 0.00	Brown, cohesive w~PL, firm to stiff.		1	SS	5																
<u>1</u>			2	SS	7																
-			\vdash			1															
F			1																		
-																					
-	 water				l																
-			3	SS	11																
2			├			-															
-			1																		
2.28	SANDY CLAYEY SILT TILL:					1															
-	Brown, trace gravel, cohesive w <pl, hard.<="" stiff="" td="" to="" very=""><td></td><td>4</td><td>SS</td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		4	SS	17																
F	,,																				
-																					
3																					
-			5	SS	25																
-			Ĭ		23																
-						1															
-			1																		
-4																					
F																					
-																					
Ŀ																					
-						1															
-			6	SS	36																
5			-			1															
-																					
-																					
Ė																					
-																					
-																					
6		117																			
†						1															
<u> </u>		1	7	SS50	0/152m	m															
<u> </u>			1																		
4-6-22		M																			
LANDGRA		W																			
7 904 1000			1																		
3-00 -08/4/																					
8221024			1																		
801 801 801 801 801 801 801 801 801 801																					
- 200 200		M	8	SS50	/101m	m															
#	<u> </u>	$u \wedge v$						1	1			1					1				

END OF BOREHOLE

Continued Next Page

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD , ZONE Date: Mar-28-2022 to Mar-28-2022 COMPILED BY

SOIL PROFILE SAMPLES DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL LIQUID 5	REMARKS
(m) ELEV DEPTH DESCRIPTION LIMIT CONTENT LIMIT WP W WL DEPTH SHEAR STRENGTH (KPa) O UNCONFINED + FIELD VANE O UNCONFINED WATER CONTENT (%)	
Continued Notes: 1) Upon completion of drilling, groundwater level was at approximately 1.5 meter below ground surface (mbgs).	GR SA SI

GRAPH NOTES

1150 **LOG OF BOREHOLE BH22-13** 1 OF 2 PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-28-2022 to Mar-28-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (510 mm) 0.51 SILTY CLAY: SS 5 Brown, trace gravel, trace sand, cohesive w~PL, firm to very stiff. 2 SS 23 3 SS 19 2.28 CLAYEY SILT TILL: Brown, trace sand, trace gravel, cohesive w<PL, very stiff to hard. 4 SS 27 5 SS 37 6 SS 32 SS 31

Continued Next Page GROUNDWATER ELEVATIONS

Measurement $\sqrt[1st]{2}$ $\sqrt[2nd]{4}$ $\sqrt[3rd]{4}$

no soil sample recovery

SS50/139mm

8

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-28-2022 to Mar-28-2022 COMPILED BY BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) ż 60 80 10 20 30 GR SA SI CL Continued END OF BOREHOLE Notes: 1). Upon completion of drilling, borehole had caved at approximately 7.3 meter below ground surface (mbgs).

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-25-2022 to Mar-25-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 Ground Surface GR SA SI CL 0.00 TOPSOIL: (510 mm) SILTY CLAY: 1 SS 0.51 5 Brown, trace rootlets, trace sand, cohesive w~PL, firm to stiff. SS 3 SS 13 2.28 CLAYEY SILT TILL: Brown to grey, trace sand, trace gravel, cohesive w<PL, very stiff to hard. 4 SS 24 5 SS 80 SS50/152mm SS 46 SS 52

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: LITM NAD ZONE

Date: Mar-25-2022 to Mar-25-2022

COMPILED BY

FJ

DATU	JM: UTM NAD , ZONE							Date:	Mar-2	25-202	2 to I	Mar-25	-2022				COM	PILE	D B	⁄ FJ
BH L	OCATION:							Eqipn	nent: D	rill Te	ch G	eoprob	e 420	М						
	SOIL PROFILE		S	AMPL	.ES			DYNAI RESIS	MIC CO TANCE	NE PEI PLOT	NETRA	TION		DI ASTI	n NAT	URAL	LIQUID		F	REMARKS
(m)		F				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	30 10	00	PLASTI LIMIT	CON	TURE TENT	LIMIT	POCKET PEN. (Cu) (kPa)	NIT (AND
ELEV		PLO			S E	W C	N O		R STI	RENG	TH (kF	^D a)		W _P		w 0	W _L	KET (RP.	:AL U	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ATA	BEF	111	BLOWS 0.3 m	UNI	EVATION		CONF		+	FIELD V. & Sensiti	ANE vity	\Λ/Δ	TER CO	- NITENI	T (%)	8g	ATUR ()	(%)
	Continued	STRATA PLOT	NUMBER	TYPE	þ	GRC	ELE		JICK TF 0 4			LAB VA 30 10	ANE 00				30		z	GR SA SI CL
7.98		\	╫		-												1			CIT OF CI OL
	Notes:																			
	Upon completion of drilling,																			
	groundwater was at approximately 0.9 meter below ground surface																			
	(mbgs).																			
4 6 22																				
LAND GPU																				
FORD HO.																				
0788-00-																				
221 02 423																				
8800																				
202200																				
1700 day																				
*												-			1					

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

LOG OF BOREHOLE BH22-15 1 OF 2 PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 COMPILED BY Eqipment: Drill Tech Geoprobe 420M
DYNAMIC CONE PENETRATION BH LOCATION:

		SOIL PROFILE		S	SAMPL	.ES			DYNA RESIS	MIC CC	NE PEN PLOT	NETRA	TION			- NATI	JRAL			_	F	REMA	RKS	
	m)		_				GROUND WATER CONDITIONS							00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT	Ä.	NATURAL UNIT WT (kN/m³)		ANI	D	ı
	m) _EV		PLO.			S E	WAS	Z			RENG	TH (k	Pa)		W _P		N	\mathbf{W}_{L}	(kPa	AL UN N/m³)			SIZE UTION	ı
DE	PTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m		ELEVATION	O UI	NCONF	INED	+	FIELD V & Sensit	ANE ivity	10/07) NITENI	T (0/)	POCKET PEN. (Cu) (kPa)	TUR.	ם ו	(%)		ı
			TR/	NO.	TYPE	ż	SRO SON	Ë			RIAXIAL 10 6	. ×	LAB V	ANE 00			ONTENT	i (%) 30		≥	CD		SI CI	ı
\vdash	0.00	Ground Surface TOPSOIL: (410 mm)	31 1/2.	_	_	-	00		-				1	1		_		1			GR	SA	51 (1	+
-		(1/ 1/																					
+	0.41	SILTY CLAY: Brown, cohesive w <pl, soft="" td="" to="" very<=""><td>X_</td><td>1</td><td>SS</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	X_	1	SS	4																		
-		stiff.	X																					
ļ		 grey, w~PL		2	SS	10																		
1		J ,,				10																		
ŀ			X_																					
ŀ			-																					
-																								
ŀ			<u> </u>	3	SS	16																		
			X				_																	
f																								
ŀ			<u></u>																					
ŀ			X_	4	SS	50																		
Ė,	2.59	CLAYEY SILT TILL:	7.37		00	30																		
	2.39	Grev. trace gravel, trace sand.																						
3		cobble fragments, cohesive w <pl, hard.<="" stiff="" td="" to="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>																						
-		,																						
ŀ				5	SS	51																		
Ŀ																								ı
ŀ			19																					ı
F																								ı
4				1																				ı
ŀ																								ı
ŀ																								ı
ļ																								
ŀ					00	24																		
ŀ				6	SS	24																		ı
5																								ı
ŀ																								
Ŀ																								
ŀ																								
ŀ																								ı
ŀ																								
6																								
F				7	SS	83																		
ļ			W	<u> </u>			4																	
ŀ																								
46.2			1																					
LANDGRA				1																				
AND COLD HOLL																								
3-00 -GRAC			191																					
ROM STCA S-221-02-02																								
28-3017 F			1																					
SOCIEMAY 06 2016	7.62	SILTY SAND: Grey, moist to wet, very dense.	韫																					
30L.		2.23,	甘抗	8	SS	78	1	l	1						I				l		l			1

Continued Next Page

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 COMPILED BY BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) ž 60 80 10 20 30 GR SA SI CL Continued END OF BOREHOLE Notes: 1). Upon completion of drilling, borehole had caved at 5.2 meters below ground surface (mbgs).

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 Method: Solid Stem Auger CLIENT: Bradford Highlands Joint Venture ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-23-2022 to Mar-23-2022 **COMPILED BY** BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
Sensitivity
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 GR SA SI CL Ground Surface 0.00 TOPSOIL: (200 mm) 11/ SAND: 0.20 1 SS 8 Brown, trace gravel, moist, loose. 0.61 SILTY CLAY: Brown, trace gravel, cohesive w<PL, very stiff to hard. SS 2 15 water SS 3 32 2.28 SANDY CLAYEY SILT TILL: 4 SS50/127mm Brown to grey, trace gravel, cobble fragment, cohesive w<PL, hard. 5 SS50/152mm SS50/127mm SS50/152mm END OF BOREHOLE

Continued Next Page

GROUNDWATER ELEVATIONS

1st 2nd 3rd 4th

Measurement \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \)

GRAPH NOTES

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ $\mathsf{DATUM} \colon \mathsf{UTM} \: \mathsf{NAD} \: , \: \mathsf{ZONE}$ Date: Mar-23-2022 to Mar-23-2022 COMPILED BY

	SOIL PROFILE		S	AMPL	ES	_		DYNA! RESIS	IIC COI	NE PEN PLOT	NETRA	TION		DI ACT	_ NATI	JRAL	HOUR		۲	REM	MARKS
(m) ELEV DEPTH	Continued	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA	0 4 AR STF ICONFI JICK TF	0 6 RENG INED RIAXIAL	0 8 TH (kF + . ×	30 10	ANE vity NE	W _P —	TER CC		LIQUID LIMIT W _L ————————————————————————————————————	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	A GRAI DISTR	IND IN SIZE IBUTIO
	Notes: 1). Upon completion of drilling, groundwater level was at approximately 1.5 meters below ground surface (mbgs).																				

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-25-2022 to Mar-25-2022

COMPILED BY

FJ

BH LOCATION: Eqipment: Drill Tech Geoprobe 420M

BH LC	OCATION:							Eqip	ment:	Drill	Tech	i Ge	eopro	be 420	M						_			_
	SOIL PROFILE		S	AMPL	ES.	<u>ر</u>		RESIS	STANC	ONE F	ENE T ~		ION		PLAST LIMIT	IC NA	TURA	L	LIQUID		Ş		MAR	
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ЭE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	INCON	40 TREN IFINED TRIAXI)	+	L Pa) FIELD \ & Sensi	/ANE tivity ANE	W _P	TER C	w -0		LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR/ DISTI	AND AIN SI RIBUT (%)	IZE
	Ground Surface		N	TYPE	ż	R 0	3	:	20	40	60	8	0 1	00	1	10	20	3	0			GR S	A SI	
0.00	TOPSOIL: (300 mm)	21 1/2																						
0.30	SILTY CLAY:	X . Y				1																		
	Brown to grey, trace gravel, trace rootlets, cohesive w <pl, soft="" stiff.<="" td="" to="" very=""><td><u></u></td><td>1</td><td>SS</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	<u></u>	1	SS	3																			
		×				1																		
	wet	<u>x</u>	2	SS	6																			
	Wet																							
		<u>×</u>																						
		X																						
		×	3	SS	16																			
		<u> </u>																						
		X_																						
		<u>x</u>	4	SS	17																			
		-																						
		<u>×</u>																						
	grey	X	5	SS	11																			
		<u> </u>																						
		<u>×</u>																						
		<u>×</u>																						
		<u> </u>																						
		<u>×</u> _		SS	16																			
		×	6	33	16																			
		<u></u>																						
		X_																						
		<u>x</u>																						
6.09	SANDY CLAYEY SILT TILL: Grey, trace gravel, cohesive w <pl,< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,<>																							
	hard.		7	SS	55																			
						1																		
		P)																						
		M		00	60																			
		M	8	SS	60																			
	Continued Next Page		8	SS	60																			

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \stackrel{\text{1st}}{\underbrace{\hspace{1em}}} \stackrel{\text{2nd}}{\underbrace{\hspace{1em}}} \stackrel{\text{3rd}}{\underbrace{\hspace{1em}}} \stackrel{\text{4th}}{\underbrace{\hspace{1em}}}$

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-25-2022 to Mar-25-2022 COMPILED BY BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) ż 40 60 80 10 20 30 GR SA SI CL Continued END OF BOREHOLE 8.02 Notes: 1). Upon completion of drilling, borehole had caved at 7.3 meter below ground surface (mbgs) and borehole was dry.

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668

CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.:

PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario

Diameter: 152 mm

ORIGINATED BY

PM

DATUM: UTM NAD , ZONE

Date: Mar-24-2022 to Mar-24-2022

COMPILED BY

FJ

BH LC	OCATION: SOIL PROFILE			SAMPL	EC	I	Г	Eqipn DYNA	ment: [MIC CC STANCE	Orill Te	ch G NETRA	eoprol TION							1	
(m) ELEV		PLOT		PAIVIPL	BLOWS 0.3 m	GROUND WATER CONDITIONS	NO.	SHE	20 4 AR ST	0 6 RENG	0 8 TH (k	30 1 Pa)	!	PLASTI LIMIT W _P	C NATI	URAL TURE TENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	
DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLO	GROUN	ELEVATION	• Q	NCONF UICK TI 20 4	RIAXIAL	. ×		ivity ANE 00		TER CC		Γ (%) 30	90 0	NATU	%)
0.00		<u>14</u>	1	SS	4															
0.61	SILTY CLAY: Brown cohesive w <pl, stiff.<="" td=""><td>// \\ X _</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	// \\ X _																		
		<u>×</u>	2	SS	12															
1.50	CLAYEY SILT TILL:	<u></u>																		
	Brown, trace sand, trace gravel, cohesive w <pl, hard.<="" stiff="" td="" to="" very=""><td></td><td>3</td><td>SS</td><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		3	SS	22															
			4	SS	22															
			5	SS	30															
<u>:</u>																				
			6	SS50)/127m	m														
6.09	SILTY SAND: Brown, trace gravel, moist, very dense.	× · · · · · · · · · · · · · · · · · · ·	7	SS50)/101m	m														
		× · · · · · · · · · · · · · · · · · · ·																		
		× : × :	8	SS50)/101m	ım														

LOG OF BOREHOLE BH22-18

PROJECT: GEOTECHNICAL INVESTIGATION For Proposed Residential Subdivision REF. NO.: 22517668 CLIENT: Bradford Highlands Joint Venture Method: Solid Stem Auger ENCL NO.: ORIGINATED BY PM PROJECT LOCATION: 23 Brownlee Drive, Bradford, Ontario Diameter: 152 mm FJ DATUM: UTM NAD, ZONE Date: Mar-24-2022 to Mar-24-2022 COMPILED BY BH LOCATION: Eqipment: Drill Tech Geoprobe 420M DYNAMIC CONE PENETRATION RESISTANCE PLOT SOIL PROFILE SAMPLES PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID AND LIMIT 40 60 80 100 NATURAL UNIT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + FIELD VANE
QUICK TRIAXIAL X LAB VANE ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) ż 60 80 10 20 30 GR SA SI CL Continued END OF BOREHOLE Notes: 1). Upon completion of drilling, groundwater level was at approximately 0.7 meter below ground surface (mbgs).

RECORD OF BOREHOLE: BH1

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 11, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

S	i i	로	SOIL PROFILE	F	1		MPL		DYNAMIC PENETRA RESISTANCE, BLOV	S/0.3m	۲,		k, cm/s	ONDUCTI		. AL ING	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60 80 nat V. + 0 rem V. ⊕ 0		W		ONTENT F	PERCENT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
ב		ō B		STR	(m)	Ž		BLC	20 40	60 80				0 30		```	
0		\dashv	GROUND SURFACE TOPSOIL		249.32					+ +							
			(ML) CLAYEY SILT, trace gravel, trace to some sand; mottled brown; cohesive, w>PL to w~PL, stiff to very stiff		0.13		DO	8					0				
1						2	DO	15						0			
		-	(CL) SILTY CLAY and SAND, trace to some gravel; brown to greyish-brown, (TILL); cohesive, w <pl stiff="" td="" to="" to<="" w~pl,=""><td></td><td>247.95 1.37</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl>		247.95 1.37												
2	06-	Auger	hard			3	DO	11					Hai			MH	
	Buggy Mount D	O/D Solid Stem Auger	Sand seam in sample 4			4	DO	45				0					
3		4"	Sand and gravel seam at 3.3 mbgs			5	DO	50/ 152 mm				0					
4			Construction of 42 above			6	DO	91				0					
			Coarse sand seam at 4.2 mbgs			7	DO	80									
5		Ц	End of Borehole		244.32 5.00			_									
			NOTE:														
6			Groundwater measured at a depth of 4.3 m below existing grade in open borehole upon completion of drilling March 11, 2016.														
7																	
8																	
9																	
10																	
DE	PT	ΉS	CALE		<u> </u>					Golder ssociat	•					L	OGGED: CL

RECORD OF BOREHOLE: BH10

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 15, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

H	모	SOIL PROFILE	1.	1	SA	MPL		DYNAMIC PENETRA RESISTANCE, BLOW	S/0.3m	λ,		AULIC C k, cm/s			물일	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	Ä	ا _س ا	BLOWS/0.3m	20 40	60 8	0 ,			0 ⁻⁵ 10 ⁻⁴	10-3	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	RING	DESCRIPTION	ATA:	DEPTH	NUMBER	TYPE	/SMC	SHEAR STRENGTH Cu, kPa	nat V. + rem V. ⊕	Q - • U - O			ONTENT PER	RCENT WI	ADDI AB. T	INSTALLATION
ב	BO		STR	(m)	z		BL(20 40	60 8	0			0 30	→ WI 40		
0		GROUND SURFACE		237.49												
U		TOPSOIL		0.00 237.29	1	DO	8						0			
		(CL/ML) SILTY CLAY to CLAYEY SILT, trace sand; light brown; cohesive, w>PL		0.20		Ш	٥									
		to w~PL, stiff														
1					2	DO	15						0			
					١	DO										
	1	5			٥	ВО	"									
2	t D-90															
	Buggy Mount D-90															
	tuggy				4	DO	11						0			
	a 5	5			\vdash											
3				234.39												
		(CL) SILTY CLAY and SAND to sandy CLAY, trace to some gravel;		3.10		DO	16					ы			мн	
		CLAY, trace to some gravel; greyish-brown, (TILL); cohesive, w~PL, very stiff to hard														
		,														
4																
				232.77	6	DO	50/ 152				0				мн	
		End of Borehole		4.72	Ť	50	mm									
5		NOTE:														
		Groundwater measured at a depth of 4.5 m below existing grade in open														
		4.5 m below existing grade in open borehole upon completion of drilling March 15, 2016.														
		March 15, 2016.														
6																
-																
7																
8																
9																
10																
			\perp													
IJΕ	ΡTΗ	SCALE						¥A₹	Golde ssocia						LO	GGED: CL

RECORD OF BOREHOLE: BH11

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 16, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SS	THOD	SOIL PROFILE	15	1	+	AMP	1	DYNAMIC PENETF RESISTANCE, BLC)WS/0.3m	,	HYDRA 10	k, cm/s			10-3	[A	PIEZOMETER
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELE\	—ı =	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGT Cu, kPa		Q - • U - O	WA	ATER CO	ONTEN	T PERC		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
٦	BO		STR	(m)	Z		BE	20 40	60 8	0	10				40		
0	_	GROUND SURFACE TOPSOIL		233.	55 00												Oi [i]
		TOI SOIL			1	DO	12							0			Casing Silica Sand
		(ML/CL) CLAYEY SILT to SILTY CLAY,		233.	14 41												
		trace gravel, trace to some sand; brown to mottled brown to brownish-grey to		1													
		grey; cohesive, w>PL to w~PL, stiff to very stiff		1	2	DC	13										
1		l vary au			Ľ		13							1			
				1													
				1	\vdash												
				1	3	DO	24						0				Hole Plug
2				1													
					4	DO	17						0				
				1	\vdash	+											
3				1													
	90			1	5	DC	19						0				
	Int D-6			1	\vdash	-											Silica Sand
	Buggy Mount D-90			1													Jointa Janu
4	Bugg			1	6	DC	23					H				МН	
				1	Ľ		23]		INIT	
																	∑ 8-Dec-2016
5				}	7	DC	26					0					
5				1													
				1													10 Slot PVC Screen
		(CL) SILTY CLAY and SAND, trace		227. 5.	99 56												
		gravel; grey, (TILL); cohesive, w~PL, hard															
6					\vdash		50/										
					8	DO	50/ 152 mm				0						
7					9	DC	68				0						
		End of Borehole		226.	- 1												
		NOTE:		'.	-												
8		drilling March 16, 2016.															
		Borehole dry upon completion of drilling March 16, 2016. Groundwater measured at a depth of 3.3 m below existing grade on September 23, 2016.															
		September 23, 2016.3. Groundwater measured at a depth od4.4 m below existing grade on December															
		4.4 m below existing grade on December 8, 2016.															
9																	
10																	
		1	-	1							<u> </u>			1		1	l
DE	PTH	SCALE							Golde Associa	r						L	OGGED: CL
1:	50							U	<u>Associa</u>	ites						CH	ECKED: NL

PROJECT: 1543120 LOCATION: See Figure 2

RECORD OF BOREHOLE: BH12

BORING DATE: March 15, 2016

SHEET 1 OF 1 DATUM: Geodetic

1			SOIL PROFILE	,		SA	MPLE	S	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYD	RAULIC CO k, cm/s	ONDUCTIVITY,	- Q	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - Cu, kPa rem V. ⊕ U - C		10 ⁻⁶ 10 WATER CO Wp I————————————————————————————————————	DNTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			GROUND SURFACE		228.74				20 40 00 00		10 2	30 40		
U			TOPSOIL		0.00	1	DO	6				0		
1			(CL) SILTY CLAY, trace to some sand, trace to some gravel, cobble fragments; greyish-brown, oxidation staining, (TILL); cohesive, w~PL to w>PL, very stiff to hard		0.51	2	DO	16			0			
2	0	iger	(CL) SILTY CLAY and SAND, trace to some gravel; greyish-brown, (TILL); cohesive, w∼PL, hard		1.70	3A 3B	DO	46			0 -		МН	
	Buggy Mount D-9	O/D Solid Stem Auger			-	4	DO	50/ 127 mm						
3		.8			_	5	DO	50/ 127 mm			0			
4			End of Borehole		223.94 4.80	6	DO	50/ 76 mm		C				
5			NOTE: 1. Groundwater measured at a depth of 2.8 m below existing grade in open borehole upon completion of drilling March 15, 2016.		4.00									
6														
7														
8														
9														
10														
DE	 EP1	гнѕ	CALE						Golder	1			L	OGGED: CL

RECORD OF BOREHOLE: BH13

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Figure 2 BORING DATE: March 21, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

``F	异	-	SOIL PROFILE	1_		SAI	MPLE	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	₹ PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	10° 10° 10⁴ 10³	PIEZOMETER OR STANDPIPE INSTALLATION
	ă	4	GROUND SURFACE	ST			\dashv	ā	20 40 60 80	10 20 30 40	
. 0		+	TOPSOIL	EEE	228.16 0.00		-				+ +
. 1			(CL) sandy CLAY, trace gravel, trace to some sand; brown to greyish-brown, (TILL); cohesive, w~PL to w <pl, stiff="" td="" to<=""><td></td><td>227.47 0.69</td><td>1</td><td></td><td>8</td><td></td><td><u> </u></td><td>МН</td></pl,>		227.47 0.69	1		8		<u> </u>	МН
	D-25 RT	O/D Hollow Stem Auger	very stiff					23		φ	
2		4	(SM/SP-GW) SILTY SAND to SAND and GRAVEL: grevish-brown. (TILL):		226.03 2.13						
			GRAVEL; greyish-brown, (TILL); non-cohesive, moist to wet, dense	4 4 4 4 4		4	DO	48		•	
3		-	(CL) SILTY CLAY and SAND, some gravel; greyish-brown, (TILL); cohesive, w∼PL, hard	484	225.26 2.90	5	DO	50/ 127			
			End of Borehole Refusal on Boulder NOTE:	13912£	224.83 3.33			mm			
5		- 1	Groundwater measured at a depth of 2.1 m below existing grade in open borehole upon completion of drilling March 21, 2016.								
6											
7											
8											
9											
10											

RECORD OF BOREHOLE: BH14

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 21, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SALE	9	I HOD	SOIL PROFILE	Ŀ		SA	MPL		DYNAMIC PENETRATI RESISTANCE, BLOWS	``\	HYDRAULIC CONDUCTIVITY, k, cm/s	I PE	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ● rem V. ⊕ U - ○	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp	120	OR STANDPIPE INSTALLATION
		9 8		STR	(m)	z		BLC	20 40	60 80	10 20 30 40		
- 0	_	H	GROUND SURFACE Mixed SILTY CLAY and TOPSOIL	 	220.48								Casing (
			WIXEG SILTT CLAT AND TOPSOIL		219.79	1	DO	7					Silica Sand Sand Sand Sand Sand Sand Sand San
1			(CL) SILTY CLAY, trace sand; mottled brown to greyish-brown to brown, oxidation; cohesive, w>PL to w <pl, stiff<br="">to hard</pl,>		0.69		DO	14			0		
						3	DO	21			0		Hole Plug
2						4	DO	37					
3	_	Stem Auger											Silica Sand
. 4	D-25 RT	4 1/4" O/D Hollow Stem Auger				5	DO	33			φ		
5						6	DO	17			⊢ 0	МН	10 Slot PVC Screen
6			Fad of Darshalls		213.93		DO	22					<u>ত, মট, মট, মট</u>
7			End of Borehole NOTES: 1. Groundwater measured at a depth of 1.6 m below existing grade in open borehole upon completion of drilling March 21, 2016. 2. Groundwater measured at a depth of 0.7 m below existing grade September		6.55								
8			12, 2016. 3. Grounwater measuted at a depth of 0.2 m below existing grade on December 8, 2016.										
9													
10													
DE	PT	ΉS	CALE	1				1		Golder ssociates		L	OGGED: CL

RECORD OF BOREHOLE: BH15

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Figure 2 BORING DATE: March 22, 2016

Y Y	5	<u> </u>	SOIL PROFILE	L-		SAM	_		YNAMIC PENETF ESISTANCE, BLC	OWS/	0.3m	八.		cm/s			Ţ	P _G	PIEZOMETER
METRES	DODING METHOD	Ĭ		STRATA PLOT	ELEV.	. يّر	ء ا ي	BLOWS/U.3m	20 40	60			10 ⁻⁶	10			10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME:	O IVIC		DESCRIPTION	ATA	DEPTH	NUMBER	14 PE	ρ S	HEAR STRENGT u, kPa	H na	at V. + em V. ⊕	Q - • U - O			NTENT OW			AB. T	INSTALLATION
7	3			STR,	(m)	Ž		BL.	20 40	60			Wp ⊢ 10	20			WI 40	" "	
		\dashv	GROUND SURFACE		224.54	\dagger	\dagger	1	1 1	Ī		-	T T	Ť		-	Ť		
0		П	TOPSOIL		0.00	1	\top												
					i i	1A C	00	4											
		╽┝	(CL) SILTY CLAY and SAND, some		224.06 0.48	1B													
			(CL) SILTY CLAY and SAND, some gravel; brown to mottled brown-grey, (TILL); cohesive, w~PL, very stiff to hard																
1			(TILL), conesive, with L, very sun to hard			2 0	00 2	05											
				4		_ _													
					-														
						3 [00 5	50											
2		-																	
-		n Aug																	
	RT	v Ster				4 [00 1	0/											
	D-25 RT	아IO		40.4	-	- -	~ n	im											
		0/0																	
3		4 1/4" O/D Hollow Stem Auger																	
						5 0	، ا ،	15										мн	
							<u> </u>											.*"	
						7													
				40,4															
4																			
5					219.51	6 [)U 8	52					0						
э		\dashv	End of Borehole	4.17.1	5.03	1	\top												
			NOTE:																
			Groundwater measured at a depth of																
			1.5 m below existing grade in open borehole upon completion of drilling																
6			March 22, 2016.																
7																			
8																			
9																			
10																			
חב	рт	нο	CALE						Á	à	olde socia							10	GGED: CI
υL	۱۱ ۲	17 50	UNLL						ĕA∖	EC	مالم	10						LU	GGED: CL

RECORD OF BOREHOLE: BH16

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 21, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

S	9	H H H	SOIL PROFILE	<u> </u>	1	+	MPL		DYNAMIC PENETRA RESISTANCE, BLOV	VS/0.3m	,		k, cm/s			. I	ING ING	PIEZOMETER
DEPTH SCALE METRES	!	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	-1 =	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	1	Q - •		TER C	ONTENT	PERCE	IO ⁻³ — ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
DE		BOR		STRA	DEPTH (m)	¹ ∃	-	BLOV	20 40		80	Wp 10		OW 3		WI 40	FFF	
- 0			GROUND SURFACE		231.6													
. 0			TOPSOIL		0.0													Casing Silica Sand
						1	DO	10										
			(MILIOL) OLAVEV CILTA CILTV OLAV		230.9	/												
1			(ML/CL) CLAYEY SILT to SILTY CLAY, trace sand; mottled greyish-brown to grey; cohesive, w>PL to w <pl, stiff="" td="" to<=""><td></td><td>0.0.</td><td></td><td>DO</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></pl,>		0.0.		DO	11						0				
·			very stiff				-											
																		Hole Plug
						3	DO	21						0				
2							-											
						4	DO	27						0				
		vuger																â
3	L	1/4" O/D Hollow Stem Auger																
	D-25 RT	Hollow				5	DO	21							0			
		4" O/D																Silica Sand
		4 1/4																
4																		8-Dec-2016
																		10 SLot PVC
						6	DO	20					0					Screen
5						Ľ		20					Ü					
6																		[3
							DO	21					0					
		Н	End of Borehole	*[#]	225.1 6.5													
7			NOTES:															
7			Groundwater measured at a depth of S m below existing grade in open															
			borehole upon completion of drilling March 21, 2016															
			2. Groundwater measured at a depth of 2.8 m below existing grade September 12, 2016.															
8			3. Grounwater measured at a depth of 4.0 m below existing grade December 8,															
			2016.															
9																		
10																		
10																		
			CALE			•										•		20050 0
DΕ	ΥĪ	HS	CALE							Golde Ssocia	ŗ							OGGED: CL ECKED: NL

PROJECT: 1543120 LOCATION: See Figure 2

RECORD OF BOREHOLE: BH17

DATUM: Geodetic BORING DATE: March 23, 2016

SHEET 1 OF 1

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

ا يَرَاجُ	-	I		L		-			DYNAMIC PENETRA RESISTANCE, BLOV		`.		/s	l l	∣₹žI	PIEZOMETER
METRES		BORING MEI HOU		STRATA PLOT	ELEV.	H	ш	BLOWS/0.3m	20 40		30		10 ⁻⁵ 10 ⁻⁴	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME:		ZINC PINC PINC PINC PINC PINC PINC PINC P	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	/SMC	SHEAR STRENGTH Cu, kPa	nat V. + rem V. ⊕	Q - • U - O		CONTENT PE	ERCENT WI	ADDI:	INSTALLATION
ב	2	ğ		STR	(m)	Ž		BLC	20 40	60 8	30	Wp	20 30	I WI 40	"]	
			GROUND SURFACE		235.02					Ţ						
0		\Box	TOPSOIL		0.00											
							DO	7								
		╽┠	(CL/ML) SILTY CLAY to CLAYEY SILT,	튪	234.51 0.51	1B										
			trace sand, trace gravel; mottled brown to grey, oxidation; cohesive, w~PL to w>PL, firm to very stiff													
1			w>PL, firm to very stiff			2	DO	18				0				
		e e	Canara and a same at 1.0 and 1.0 anhar			3	DO	22				0				
2		n Aug	Coarse sand seams at 1.8 and 1.9 mbgs													
	RT	/ Sten														
	D-25 RT	Aollow				4	DO	27								
		1/4" O/D Hollow Stem Auge														
_		4 1/4"														
3																
						5	DO	20				0				
4			(141)		230.98											
			(ML) sandy SILT, trace gravel; grey; non-cohesive, wet, very dense		4.04											
						6	DO	50/ 102				0			МН	
		\dashv	End of Borehole	144.	230.19 4.83			mm								
5			NOTE:													
			Groundwater measured at a depth of													
			Groundwater measured at a depth of 1.1 m below existing grade in open borehole upon completion of drilling													
			borehole upon completion of drilling March 23, 2016.													
6																
7																
8																
9																
10																
10																
	1			1	1						I.					
			CALE								er ates					GGED: CL

RECORD OF BOREHOLE: BH18

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 23, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SALE	Š		SOIL PROFILE	F		+	SAMPI	1	DYNAMIC PENET RESISTANCE, BL			, , , , , , , , , , , , , , , , , , ,		k, cm/s			I	ING ING	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELE'	TH	TYPE	BLOWS/0.3m	20 40 SHEAR STRENG Cu, kPa			30 · Q - ● • U - O		ATER C	0 ⁻⁵ 1 ONTENT	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	2	<u> </u>	GROUND SURFACE	STI	(m)	_	_	H	20 40	6	0 8	30	10				40 	_	
0		Н	TOPSOIL	EEE	236	.95	-												Casing
					236	1/	A DO	11											Silica Sand
			(ML) CLAYEY SILT, trace sand, trace	TTT		.43 11	В												
			gravel; brownish-grey; cohesive, w~PL to w>PL, very stiff																
1					}	2	DO	23						0					
					1	\vdash													Hole Plug
					1	L													8-Dec-2016
		1/4" O/D Hollow Stem Auger			1	3	B DO	29						(
2	T	Stem	Coarse sand seam at 1.9 mbgs			L													193
	D-25 F	Hollow	_		234	.75 .20													Silica Sand
		0/D	(CL) sandy CLAY, trace to some gravel; mottled brown to grey, (TILL); cohesive, w~PL, hard		_									^					
		4 1/4"	w~PL, Ilaiu			4		80						0					
					1														
3					1	\vdash	-												10 Slot PVC Screen
					1	5	DO	80						0					
					1	F													
					1	\vdash													
4					1		DO	54)					
		┧	End of Borehole on Refusal	nomet.	232	.68	\dagger												
			NOTES:																
			1. Groundwater measured at a depth of 0.9 m below existing grade in open																
5			borehole upon completion of drilling March 23, 2016.																
			2. Groundwater measured at a depth of 1.7 m below existing grade September																
			12, 2016. 3. Groundwater measured at a depth of																
			1.3 m below existing grade on December 8, 2016.																
6			0, 2010.																
7																			
8																			
9																			
10																			
		_			L														
			CALE						À	<u>.</u>									200ED CI
DΕ	۲1	нS	CALE							E (olde	er ates							OGGED: CL ECKED: NL

RECORD OF BOREHOLE: BH19

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 23, 2016

ل <u>ــــ</u>	1	밁	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRAT RESISTANCE, BLOW	S/0.3m	,	R, (C CONDUC cm/s	HIVIIY,		PIEZOMETER
METRES		BORING METHOD		STRATA PLOT	E1 E1/	ER	[BLOWS/0.3m	20 40	60 80	`	10 ⁻⁶		10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	1		DESCRIPTION	ATA I	ELEV. DEPTH	NUMBER	TYPE)/S/(SHEAR STRENGTH Cu, kPa	nat V. + Q - rem V. ⊕ U -			R CONTEN	T PERCENT	AB. T.	INSTALLATION
دَ		BOF		STR/	(m)	ž		BLC	20 40	60 80		Wp ⊢ 10		₩I 30 40	4 5	
	Г		GROUND SURFACE	 	241.21						\dashv	10		1 1		
0		П	TOPSOIL	EEE	0.00	1A					7					
			(CL) sandy SILTY CLAY trace to some		240.93 0.28		DO	6								
			(CL) sandy SILTY CLAY, trace to some gravel; mottled brown grey to greyish brown, (TILL); cohesive, w <pl to="" w="">PL,</pl>			1B										
			firm to very stiff													
						2	DO	22					,			
1						2	БО	22					´			
						3	DO	21				0	—		МН	
2		Auger														
_	L	en A	(SM) SILTY SAND, trace to some		239.08											
	D-25 RT	Solid Stem	gravel; greyish brown, (TILL); non-cohesive, moist, very dense		;											
		O/D So	sonosno, moior, vory donoc		:	4	DO	72				0				
		4"0			1											
3]			_,								
					1	5	DO	93/ 279 mm				0				
					}											
					;											
					:											
4]											
				40,4	1											
]			50/								
	_	Н	End of Borehole		236.51	6	DO	127 mm				0				
5			NOTE:													
5																
			Groundwater measured at a depth of Below existing grade in open													
			borehole upon completion of drilling March 23, 2016.													
6																
7																
8																
0																
9																
10																
DE	тд	гн е	CALE							Golder ssociate					1.0	OGGED: CL
JE	. 1	3	O/ LL							Golder					L	JUJED. OL

RECORD OF BOREHOLE: BH2

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 14, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SALE		밁	SOIL PROFILE	_			MPL	_	DYNAMIC PENETRA RESISTANCE, BLOV		,	k,	IC CONDUCTIVITY, cm/s	10 ⁻³	NAL	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa		Q - • U - O	WATE	ER CONTENT PERC	10 ⁻³ ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		ш	GROUND SURFACE	S	245.66			<u> </u>	20 40	60 8	30	10	20 30	40	1	
0		Π	TOPSOIL FILL-(CL) SILTY CLAY trace sand trace		0.00											Casing Silica Sand
			FILL-(CL) SILTY CLAY, trace sand, trace to some gravel; brown; cohesive, w~PL, firm		245.15	1	DO	5				0			Metals, inorganio	
			(CL) SILTY CLAY and SAND, trace to some gravel, cobble fragments;		0.51											
1			some gravel, cobble fragments; greyish-brown, (TILL); cohesive, w~PL, very stiff to hard			2	DO									Hala Diva
						_	БО	26								Hole Plug
						3	DO	35				0				2
2																Silica Sand
	E 55	Auger														
	unt CM	w Sterr				4	DO	75				0			MH, VOC, PHC, ph	
3	ruck Mc	O/D Hollow Stem Auger				L									PHC, ph	
	Ē	8 0/				5	DO	90				0				
																8-Dec-2016
								95/ 279								10 Slot PVC Screen
4						6	DO	279 mm				0	'			
						7	DO	50/ 51								
5								mm								
						8	DO	50/ 102							VOC, PHC	
			End of Borehole	YAKKAK.	240.22 5.44			mm							PHC	
			NOTE:													
6			Groundwater measured at a depth of 3.2 m below existing grade in open borehole upon completion of drilling													
			March 14, 2016. 2. Groundwater measured at a depth of													
			3.4 m below existing grade in monitoring well on December 8, 2016.													
7																
8																
9																
10																
	_			1	I	I	I	I		<u> </u>	<u> </u>	<u> </u>			1	
	F1 50		CALE							Golde Associa	eŗ					OGGED: CL ECKED: NL

RECORD OF BOREHOLE: BH3

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Figure 2 BORING DATE: March 11, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

H.			SOIL PROFILE			SA	MPLE	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	₽ [©]	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp I OW I WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	B			STF	(m)	_	_	В	20 40 60 80	10 20 30 40	Ľ	
. 0	—		ROUND SURFACE LL-(SW/GP) SAND and GRAVEL,	XX	245.36	1A	4	4			Metals	Cooling [11
		FII so sti	ome silt, asphalt fragments; brown; on-cohesive, moist, compact LL-(CL) SILTY CLAY, some sand, ome gravel; brown; cohesive, w>PL,		0.00 0.08 244.95 0.41	1B	DO	14			Metals, inorganic	Casing Silica Sand
1		gri	.L) SiLTY CLAY and SANU, some avel; brown to greyish-brown, (TILL); phesive, w~PL, very stiff to hard			2	DO	49		0	VOC, PHC	Hole Plug
- 2						3	DO	67		0		Silica Sand
3	Mount D-90	O/D Hollow Stem Auger				4	DO	81		0	VOC, PHC	
. 3		8" O/D Hollo				5	DO	67		0		8-Dec-2016
- 4						6		80/ 229 mm				
5						7	DO 2	95/ 279 mm				ુપ્યાપ્યાપ્યા
6		Er	nd of Borehole		239.44 5.92	8	DO	75				
7		1. 2.8 bo Ma 2. 3.3 12 3.	OTES: Groundwater measured at a depth of 8 m below existing grade in open orehole upon completion of drilling arch 14, 2016. Groundwater measured at a depth of 3 m below existing grade September 2, 2016. Groundwater measured at a depth of 4 m below existing grade December 8, 116.									
8		20	710.									
9												
10 DE	PTH	I SCAI	LE						Golder		Lo	OGGED: CL

RECORD OF BOREHOLE: BH4

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: See Figure 2

BORING DATE: March 14, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SALE	THO		SOIL PROFILE	Τ <u></u>		+	AMPI	1	DYNAMIC PENETRA RESISTANCE, BLOV	/S/0.3m	HYDRAULIC CC k, cm/s 10 ⁻⁶ 10		ING ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELE	TH	TYPE	BLOWS/0.3m	20 40 I SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ● rem V. ⊕ U - ○	WATER CC	-5 10 ⁻⁴ 10 ⁻³ NTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	2	4	ODOLIND OLIDE LOS	STF	(m	,	+	BL	20 40	60 80	10 20		-	
. 0		+	GROUND SURFACE FILL-(ML) CLAYEY SILT, some sand,	\otimes		5.21 0.00	+							Casing
			some gravel; brown; cohesive, w>PL, stiff		24	4.52	DO	10			0		Metals, inorganio	Silica Sand
1			(CL) SILTY CLAY and SAND, trace to some gravel, cobble fragments; greyish-brown, (TILL); cohesive, w~PL, hard			0.69	DO	30			0			Hole Plug
						3	DO	34			0			
2	35	rger												Silica Sand
3	Truck Mount CME 55	follow Stem Ar				4	DO	47			0		VOC, PHC	
s	Truck	8" O/D H				5	DO	49						
4						=6	DO	50/ 25 mm						10 Slot PVC Screen
5						7	DO	91			0		VOC, PHC	
5					23	9.57 8	DO	50/ 152 mm						
			End of Borehole	- PIGVI	20	5.64		mm						
6			NOTE: 1. Groundwater measured at a depth of 4.4 m below existing grade in open borehole upon completion of drilling March 14, 2016. 2. Monitoring well unable to be located due to golf course landscaping.											
8														
9														
10														
DE	PTI	- I	CALE	1	<u> </u>					Golder ssociates	1 1		L	DGGED: CL

RECORD OF BOREHOLE: BH5

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 15, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SALE	9	뒫	SOIL PROFILE	Ŀ			AMPL	_	DYNAMIC PENETRA RESISTANCE, BLOV	/S/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	I 4 B	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELE\ DEPT (m)	비불	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	nat V. + Q - ■ rem V. ⊕ U - C	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp W W	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	_	ă	ODOLIND CUDEACE	ST		+		BI	20 40	60 80	10 20 30 40	-	
- 0		\dashv	GROUND SURFACE TOPSOIL	EEE	248. 0.	16	-					+	Casing Silica Sand
						1	DO	3					Silica Sand
			FILL-(ML) CLAYEY SILT and SAND;		247. 0.								
			light brown; cohesive, w <pl to="" w="">PL, firm</pl>	\bowtie									
- 1				\bowtie		2	DO	6					
				\bowtie		-							
				\bowtie									Hole Plug
				\bowtie		3	DO	6				мн	
2				\bowtie									
			(CL) SILTY CLAY and SAND, some		246. 2.								
			gravel; greyish-brown, (TILL); cohesive, w~PL to w>PL, hard			4	DO	46					
	2	Jer	Coarse sand seam at 2.6 mbgs			Ľ		40					Į.
- 3	SME 5	Stem Auger	•										Silica Sand
J	Truck Mount CME 55	low Ste					1_						🗼 🕸
	ruck N	O/D Hollow				5	DO	56			OH	MH	8-Dec-2016
	T	8											
4													
						\vdash	1						10 Slot PVC Screen
						6	DO	53					
. 5													
- 6						L	1	50/ 76					
		Н	End of Borehole	AR	241. 6.		DO	76 mm					
			NOTES:										
			Groundwater measured at a depth of 3.4 m below existing grade in open										
7			borehole upon completion of drilling										
			March 15, 2016. 2. Groundwater measured at a depth of 2.9 m below existing grade September										
			12. 2016.										
			3. Groundwater measured at a depth of 3.2 m below existing grade December 8,										
8			2016.										
- 9													
- 10													
DE	PΤ	гн s	CALE							Caldan		L	OGGED: CL
	50									Golder ssociates		CH	IECKED: NL

RECORD OF BOREHOLE: BH6

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 15, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

Ц Н		위	SOIL PROFILE	1.		SA	MPL	-	DYNAMIC PENETRAT RESISTANCE, BLOW	S/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	T 48	PIEZOMETER
METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH	60 80 nat V. + Q - ●	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
⊒		ORIN	DESCRIPTION	RAT/	DEPTH (m)	NOM	Ξ	LOW	Cu, kPa	rem V. \oplus U - O	Wp O^W W	ADE LAB.	INSTALLATION
	L	ă		ST	(111)	-		В	20 40	60 80	10 20 30 40	++	
0	L	-	GROUND SURFACE TOPSOIL	 	242.51								
			TOT GOILE				DO	4					
					242.00								
			(CL) SILTY CLAY, trace sand; brown to mottled light brown; cohesive, w <pl td="" to<=""><td></td><td>0.51</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl>		0.51								
1			w~PL, stiff to very stiff			2	DO	12				мн	
Ċ						Ľ						""	
						3	DO	21					
2		ger			240.38								
	10-9	a Au	(CL) SILTY CLAY and SAND, trace to some gravel, cobble fragments;		2.13	<u>'</u>							
	Mour	Nid St	some gravel, cobble fragments; greyish-brown to grey, (TILL); cohesive, w~PL, hard			4	DO	49					
	Buga	" O/D Solid Stem Auger					-						
3		4						75/					
						5	DO	279 mm					
						L							
4						6	DO	42					
						Ľ		+2					
_					237.48	1	DO	36					
5			End of Borehole	MASK.	5.03								
			NOTE:										
			Groundwater measured at a depth of The below existing grade in open.										
			4.7 m below existing grade in open borehole upon completion of drilling March 15, 2016.										
6			Walcii 15, 2016.										
7													
8													
-													
_													
9													
10													
DF	P	TH S	CALE							0.11		LO	GGED: CL
1:										Golder ssociates			CKED: NL

RECORD OF BOREHOLE: BH7

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 15, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

Ц		НОР	SOIL PROFILE	1.		SA	AMPL	_	DYNAMIC PENETRATESISTANCE, BLOW	S/0.3m	HYDRAULIC C k, cm/s	ONDUCTIVITY,	. Se l	EZOMETER
METRES		BORING METHOD		STRATA PLOT		띪		J.3m	20 40	60 80		0 ⁻⁵ 10 ⁻⁴ 10 ⁻³	- 3E	OR TANDPIPE
Ā		SING	DESCRIPTION	4TA F	ELEV.	_ =	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	$\begin{array}{cccc} nat \ V. \ + \ Q \ - \ \bullet \\ rem \ V. \ \oplus \ U \ - \ O \end{array}$		ONTENT PERCENT	AB. T.	STALLATION
5		BOF		STR	(m)	ž	ļ.	BLO	20 40	60 80	Wp ├	──── WI 20 30 40		
_	t		GROUND SURFACE	†	241.0	в			20 40		10 2			
0	r	Т	TOPSOIL	EEE	0.0									
						1	DO	8				b		
			FILL-(ML) CLAYEY SILT, trace sand;		240.6									
			light brown; cohesive, w>PL, stiff	\otimes	3									
1				\bowtie										
				\bowtie	1	2	DO	11			0			
				\otimes	3	\vdash								
				\otimes	3	\vdash								
				\otimes		3	DO	11			0			
2		١		\bowtie	238.9	_	-							
	8	Auge	(CL) SILTY CLAY and SAND, trace to		2.13									
	4	"O/D Solid Stem Auger	some gravel, cobble fragments; greyish-brown, (TILL); cohesive, w~PL,		1	_	DO	40					MH ND	
	, in	Solid	hard			4	100	40			0		MH, NP	
	1	gio.												
3		.4			1	-	1	50/ 127						
						5	DO	127 mm			0			
4														
4					1									
					1									
						\vdash	-							
					1	6	DO	32			•			
5	L	\perp	End of Borehole		236.0 5.0	5								
					5.0									
			NOTE:											
			Groundwater measured at a depth of depth of an additional strength of the strength of											
			4.2 m below existing grade in open borehole upon completion of drilling March 15, 2016.											
6														
7														
,														
8														
9														
10														
10														
				1	1		1					1 1	1 1	
DE	EΡ	TH S	CALE							Golder ssociates			LOGGED:	CL
1:	: 50	0							V	ssociates			CHECKED:	NII

PROJECT: 1543120 LOCATION: See Figure 2

RECORD OF BOREHOLE: BH8

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: March 10, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

SALE	THO	} }	SOIL PROFILE	Ē		+	AMPL	_	DYNAMIC PENETRA RESISTANCE, BLOV	- ',	k, cm/s	. ₹≌	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV DEPT	=	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - rem V. ⊕ U -	10 ⁵ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	ă	i	GROUND SURFACE	ST	(m)	\perp	-	BL	20 40	60 80	10 20 30 40	<u> </u>	
- 0		+	FILL-(CL) SILTY CLAY, trace sand,	$\times\!\!\times$	236.6								Casing
			mixed organics; brown to light brown; cohesive, w <pl, firm="" stiff<="" td="" to=""><td>\bowtie</td><td></td><td>1</td><td>DO</td><td>7</td><td></td><td></td><td></td><td></td><td></td></pl,>	\bowtie		1	DO	7					
				\bowtie	235.9								Hole Plug
		ŀ	(CL) sandy CLAY, trace to some gravel;		0.6	39							Tiole Flag
1			mottled brown to brown to brownish-grey to grey, (TILL); cohesive, w>PL to w~PL, stiff to hard			2	DO	10					o:: o
			Sun to Hard										Silica Sand
		ē				\vdash	-						
	Buggy Mount D-90	em Aug				3	DO	20					
2	, Moun	low St											
	Buggy	M D/O				4	-	64/ 254				MH,	
		8				+	-	mm				BTEX, PHC	
													10 Slot PVC Screen
3						\vdash	-						
						5	DO	88					
							1						
						6	DO	50/ 152				BTFX	
4	\perp	+	End of Borehole		232.5	51	+	mm				BTEX, PHC	
			NOTES:										
			Groundwater measured at a depth of A m below existing grade in open.										
5			2.2 m below existing grade in open borehole upon completion of drilling March 10, 2016.										
			Groundwater measured at a depth of Below existing grade September										
			12, 2016. 3. Monitoring well unable to be accessed										
			due to damaged well cover.										
6													
7													
8													
9													
10													
				1				1				1	<u> </u>
DE	PTH	H S	CALE							Golder ssociates		1.0	OGGED: CL

RECORD OF BOREHOLE: BH9

SHEET 1 OF 1

LOCATION: See Figure 2 DATUM: Geodetic BORING DATE: March 11, 2016

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

GROUND SURFACE FILL-(SP/GP) SAND and GRAVEL, some silt; grey; non-cohesive, moist, compact (CL) SILTY CLAY, trace sand; brown; cohesive, w>PL, stiff to very stiff to hard	□ □	ELEV. DEPTH (m) 236.24 0.00 235.73 0.51	1A 1B 2 1	DO 12	20 41	GTH nat V. + Q rem V. ⊕ U		10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ ER CONTENT PERCENT	ADI	PIEZOMETER OR STANDPIPE INSTALLATION Casing
GROUND SURFACE FILL-(SP/GP) SAND and GRAVEL, some silt; grey; non-cohesive, moist, compact (CL) SILTY CLAY, trace sand; brown; cohesive, w>PL, stiff to very stiff to hard	5	236.24 0.00 235.73	1B 2 !	DO 12	20 41	0 60 80		20 30 40		
FILL-(SP/GP) SAND and GRAVEL, some silt; grey; non-cohesive, moist, compact (CL) SILTY CLAY, trace sand; brown; cohesive, w>PL, stiff to very stiff to hard		235.73	1B 2 !				0			
compact (CL) SILTY CLAY, trace sand; brown; cohesive, w>PL, stiff to very stiff to hard			1B 2 !				0		BTEX, PHC, pH	
cohesive, w>PL, stiff to very stiff to hard			2 1	DO 14					BTEX, PHC, ph	
				DO 14					110, p.	· •
				DO 14						
			2					0		
			,	- 1						Hole Plug
			، ا ر							
		}	ال	DO 21				Ю	МН	
			4	DO 37				·	BTEX, PHC, pH	Silica Sand
- I (CI) SII I Y CI AY AND SANI I Trace to		233.26								
(CL) SILTY CLAY and SAND, trace to some gravel; greyish-brown to grey, (TILL); cohesive, w>PL, very stiff to hard										
			5 1	DO 35						
			6 1	DO 60			0			
										10 Slot PVC Screen
			7 1	DO 28			0	-	мн	
			8 1	DO 46			0			
			\dashv							
			9 1	DO 29			0			
End of Porobolo		229.69		\perp]					
		0.55								
1. Croundwater measured at a depth of										
4.9 m below existing grade in open borehole upon completion of drilling										
2. Monitoring well unable to be located										
due to gon course lanuscaping.										
SCALE						Golder Associate				
	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located due to golf course landscaping.	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located due to golf course landscaping.	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located due to golf course landscaping.	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located due to golf course landscaping.	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located due to golf course landscaping.	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located due to golf course landscaping.	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located	End of Borehole NOTE: 1. Groundwater measured at a depth of 4.9 m below existing grade in open borehole upon completion of drilling March 11, 2016. 2. Monitoring well unable to be located

September 5, 2023 22517668

APPENDIX E

Single Well Response Testing Results

Data Set: \...\BH5.aqt

Date: 03/06/18 Time: 11:14:39

PROJECT INFORMATION

Company: Golder

AQUIFER DATA

Saturated Thickness: 6.2 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH5)

Initial Displacement: 0.8 m

Total Well Penetration Depth: 6. m

Casing Radius: 0.025 m

Static Water Column Height: 6.2 m

Screen Length: 3.05 m Well Radius: 0.075 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 2.058E-6 m/sec

Solution Method: Bouwer-Rice

y0 = 0.7593 m

Data Set: \...\BH8.aqt

Date: 03/06/18 Time: 11:15:16

PROJECT INFORMATION

Company: Golder

AQUIFER DATA

Saturated Thickness: 3.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH8)

Initial Displacement: 1.36 m

Total Well Penetration Depth: 4.05 m

Casing Radius: 0.025 m

Static Water Column Height: 3.9 m

Screen Length: 3.05 m Well Radius: 0.075 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 9.201E-8 m/sec

y0 = 1.262 m

Data Set: \...\BH14.aqt

Date: 03/06/18 Time: 11:16:05

PROJECT INFORMATION

Company: Golder

AQUIFER DATA

Saturated Thickness: 6.35 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH8)

Initial Displacement: 1.2 m

Total Well Penetration Depth: 5. m

Casing Radius: 0.025 m

Static Water Column Height: 6.35 m

Screen Length: 3.05 m Well Radius: 0.075 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.583E-8 m/sec y0 = 1.142 m

Data Set: \...\BH16.aqt

Date: 03/06/18 Time: 11:17:22

PROJECT INFORMATION

Company: Golder

AQUIFER DATA

Saturated Thickness: 6.35 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH16)

Initial Displacement: 1.2 m

Total Well Penetration Depth: 4.9 m

Casing Radius: 0.025 m

Static Water Column Height: 6.35 m

Screen Length: 3.05 m Well Radius: 0.075 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 1.109E-7 m/sec y0 = 1.054 m

Data Set: \...\BH18.aqt

Date: 03/06/18 Time: 11:20:10

PROJECT INFORMATION

Company: Golder

AQUIFER DATA

Saturated Thickness: 4.05 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH16)

Initial Displacement: 1.1 m

Total Well Penetration Depth: 2.52 m

Casing Radius: 0.025 m

Static Water Column Height: 4.05 m

Screen Length: 1.5 m Well Radius: 0.075 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 9.426E-8 m/sec y0 = 1.004 m

Data Set: C:\...\BH22-05.aqt

Date: 10/12/22 Time: 17:45:38

PROJECT INFORMATION

Company: Golder Associates

Project: 22517668
Test Well: BH22-05
Test Date: 18'Aug'22

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH22-05)

Initial Displacement: 1.2 m

Total Well Penetration Depth: 8.19 m

Casing Radius: 0.0254 m

Henetiation Depth. <u>6.19</u> m Hite: 0.0254 m Static Water Column Height: 8.25 m

Screen Length: 3.05 m Well Radius: 0.076 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 3.958E-8 m/sec y0 = 1.202 m

Data Set: C:\...\BH22-09.aqt

Date: 10/12/22 Time: 17:46:45

PROJECT INFORMATION

Company: Golder Associates

Project: 22517668
Test Well: BH22-09
Test Date: 18'Aug'22

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH22-9)

Initial Displacement: 1.175 m

Total Well Penetration Depth: 8.715 m

Casing Radius: 0.0254 m

Static Water Column Height: 8.785 m

Screen Length: 3.05 m Well Radius: 0.076 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.576E-7 m/sec

y0 = 1.18 m

September 5, 2023 22517668

APPENDIX F

Groundwater Hydrographs

September 5, 2023 22517668

APPENDIX G

Laboratory Analytical Results

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: --- REPORT No. B22-26593

Report To: Caduceon Environmental Laboratories

Golder Associates Ltd.112 Commerce Park Drive121 Commerce Park Drive, Unit L,Barrie ON L4N 8W8

 Barrie ON. L4N 8X1 Canada
 Tel: 705-252-5743

 Attention:
 Patrick Merritt
 Fax: 705-252-5746

DATE RECEIVED: 19-Aug-22 JOB/PROJECT NO.:

DATE REPORTED: 30-Aug-22
SAMPLE MATRIX: Groundwater P.O. NUMBER: 22517668 (2000)

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Alkalinity (as CaCO3)	1	Holly Lane	SYL	22-Aug-22	A-ALK-03 (o)	SM 2320B
Cyanide	1	Kingston	TK	24-Aug-22	A-CN-001 (k)	SM 4500CN
Nitrogen - Ammonia (N)	1	Kingston	KD	25-Aug-22	A-NH3-001 (k)	SM4500-NH3-H
Nitrogen - Ammonia (N)	1	Holly Lane	KD	25-Aug-22	A-NH3-Unionized	Calc.
рН	1	Holly Lane	SYL	22-Aug-22	A-PH-01 (o)	SM 4500H
Sulphide	1	Kingston	TK	23-Aug-22	A-S2	SM4500-S2
A - Wet Chem	2	Kingston	amc	25-Aug-22	A-TPTKN-001 (P)(k)	E3516.2
Total Suspended Solids	2	Kingston	mci	22-Aug-22	A-TSS-001 (k)	SM2540D
Turbidity	1	Holly Lane	ST	23-Aug-22	A-TURB-01 (o)	SM 2130
B - Bacteriological	1	Barrie	EsT	19-Aug-22	B-EC-001 (b)	SM9222D
Glycols	1	Kingston	KPR	22-Aug-22	C-Glycol-01 (k)	EPA 8015
Oil & Grease	1	Kingston	MTY	24-Aug-22	C-O&G-001 (k)	SM 5520
Phenolics (4-aap)	1	Kingston	TK	25-Aug-22	C-PHEN-01 (k)	MOEE 3179
Chromium (VI)	1	Holly Lane	ST	26-Aug-22	D-CRVI-01 (o)	MOE E3056
Mercury	1	Holly Lane	PBK	23-Aug-22	D-HG-02 (o)	SM 3112 B
Metals - ICP-OES	2	Holly Lane	AHM	24-Aug-22	D-ICP-01 (o)	SM 3120
Metals - ICP-MS	2	Holly Lane	TPR	25-Aug-22	D-ICPMS-01 (o)	EPA 200.8

PWQO - Provincial Water Quality Objectives Interim PWQO - Interim PWQO

PWQO - Provincial Water Quality Objectives

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: ---**REPORT No. B22-26593**

Report To: **Caduceon Environmental Laboratories**

Golder Associates Ltd. 112 Commerce Park Drive 121 Commerce Park Drive, Unit L. Barrie ON L4N 8W8 Barrie ON. L4N 8X1 Canada Tel: 705-252-5743 **Attention:** Patrick Merritt Fax: 705-252-5746

JOB/PROJECT NO.: DATE RECEIVED: 19-Aug-22

DATE REPORTED: 30-Aug-22 P.O. NUMBER: 22517668 (2000)

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D.		BH22-3	BH22-3-F	PW	QO
	Sample I.D).	B22-26593-1	B22-26593-2	Interim	PWQO
	Date Colle	cted	18-Aug-22	18-Aug-22	PWQO	
Parameter	Units	R.L.				
E coli	cfu/100mL	1	< 2			100
pH @25°C	pH Units		7.99			8.5
Alkalinity(CaCO3) to pH4.5	mg/L	5	231			
Hardness (as CaCO3)	mg/L	1	289	231		
Cyanide (Free)	μg/L	5	< 5			5
Ammonia (N)-Total	μg/L	10	170			
Ammonia (N)-unionized	μg/L	10	< 10			20
Phosphorus-Total	μg/L	10	130	20	10	
Phenolics	μg/L	1	< 1			1
Sulphide	μg/L	10	60			
Turbidity	NTU	0.1	299			
Total Suspended Solids	mg/L	3	206	5		
Aluminum	μg/L	10	1620	40	75	
Antimony	μg/L	0.1	0.5	0.5	20	
Arsenic	μg/L	0.1	1.2	1.1	5	5
Beryllium	μg/L	2	< 2	< 2		11
Boron	μg/L	5	19	14	200	
Cadmium	μg/L	0.015	0.015	< 0.015	0.1	0.2
Chromium	μg/L	1	2	< 1		
Chromium (VI)	μg/L	1	< 1			1
Cobalt	μg/L	0.1	1.0	0.2	0.9	
Copper	μg/L	0.1	2.4	0.5	5	
Iron	μg/L	5	2310	31		300
Lead	μg/L	0.02	0.91	< 0.02	1	5

PWQO - Provincial Water Quality Objectives

Interim PWQO - Interim PWQO

PWQO - Provincial Water Quality Objectives

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

DATE RECEIVED: 19-Aug-22

CERTIFICATE OF ANALYSIS

JOB/PROJECT NO.:

Final Report

C.O.C.: --- REPORT No. B22-26593

Report To: Caduceon Environmental Laboratories

Golder Associates Ltd.112 Commerce Park Drive121 Commerce Park Drive, Unit L,Barrie ON L4N 8W8Barrie ON. L4N 8X1 CanadaTel: 705-252-5743

 Attention:
 Patrick Merritt

 Fax: 705-252-5746

DATE REPORTED: 30-Aug-22 P.O. NUMBER: 22517668 (2000)

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D.		BH22-3	BH22-3-F	PW	QO
	Sample I.I) .	B22-26593-1	B22-26593-2	Interim	PWQO
	Date Colle	ected	18-Aug-22	18-Aug-22	PWQO	
Parameter	Units	R.L.				
Mercury	μg/L	0.02	< 0.02			0.2
Molybdenum	μg/L	0.1	0.8	1.0	40	
Nickel	μg/L	0.2	2.4	0.3		25
Selenium	μg/L	1	< 1	< 1		100
Silver	μg/L	0.1	< 0.1	< 0.1		0.1
Thallium	μg/L	0.05	< 0.05	< 0.05	0.3	0.3
Tungsten	μg/L	10	< 10	< 10	30	
Uranium	μg/L	0.05	0.13	0.06	5	
Vanadium	μg/L	0.1	2.7	0.4	6	
Zinc	μg/L	5	11	< 5	20	30
Zirconium	μg/L	3	< 3	< 3	4	
Oil and Grease- Anim/Veg. (Calculation)	μg/L	1000	2100			
Oil and Grease-Mineral	μg/L	1000	< 1000			
Oil & Grease-Total	μg/L	1000	2200			
Propylene Glycol	μg/L	3000	< 3000		44000	
Ethylene Glycol	μg/L	2000	< 2000		2000	
Diethylene Glycol	μg/L	3000	< 3000		11000	
Total Glycols	μg/L	3000	< 3000			

PWQO - Provincial Water Quality Objectives

Interim PWQO - Interim PWQO

PWQO - Provincial Water Quality Objectives

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: ---**REPORT No. B22-26593**

Report To: **Caduceon Environmental Laboratories**

Golder Associates Ltd. 112 Commerce Park Drive 121 Commerce Park Drive, Unit L. Barrie ON L4N 8W8

Barrie ON. L4N 8X1 Canada Tel: 705-252-5743 **Attention:** Patrick Merritt Fax: 705-252-5746

JOB/PROJECT NO.: DATE RECEIVED: 19-Aug-22

DATE REPORTED: 30-Aug-22 P.O. NUMBER: 22517668 (2000)

SAMPLE MATRIX: Groundwater WATERWORKS NO.

Summary of Exceedances

Interim PWQO		
BH22-3	Found Value	Limit
Phosphorus-Total (µg/L)	130	10
Cobalt (µg/L)	1.0	0.9
Aluminum (µg/L)	1620	75
BH22-3-F	Found Value	Limit
Phosphorus-Total (µg/L)	20	10

Provincial Water Quality Objective	es .	
BH22-3	Found Value	Limit
Iron (µg/L)	2310	300

PWQO - Provincial Water Quality Objectives Interim PWQO - Interim PWQO PWQO - Provincial Water Quality Objectives

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

